1,797 research outputs found

    Pion Form Factor in the kTk_T Factorization Formalism

    Full text link
    Based on the light-cone (LC) framework and the kTk_T factorization formalism, the transverse momentum effects and the different helicity components' contributions to the pion form factor Fπ(Q2)F_{\pi}(Q^2) are recalculated. In particular, the contribution to the pion form factor from the higher helicity components (λ1+λ2=±1\lambda_1+\lambda_2=\pm 1), which come from the spin-space Wigner rotation, are analyzed in the soft and hard energy regions respectively. Our results show that the right power behavior of the hard contribution from the higher helicity components can only be obtained by fully keeping the kTk_T dependence in the hard amplitude, and that the kTk_T dependence in LC wave function affects the hard and soft contributions substantially. As an example, we employ a model LC wave function to calculate the pion form factor and then compare the numerical predictions with the experimental data. It is shown that the soft contribution is less important at the intermediate energy region.Comment: 21 pages, 4 figure

    Light Quark Masses with Nf=2N_f=2 Wilson Fermions

    Get PDF
    We present new data on the mass of the light and strange quarks from SESAM/Tχ\chiL. The results were obtained on lattice-volumes of 163×3216^3\times 32 and 243×4024^3\times 40 points, with the possibility to investigate finite-size effects. Since the SESAM/Tχ\chiL ensembles at β=5.6\beta=5.6 have been complemented by configurations with β=5.5\beta=5.5, moreover, we are now able to attempt the continuum extrapolation (CE) of the quark masses with standard Wilson fermions.Comment: Lattice2001(spectrum), minor correction

    Adventures in Interactive Compilation

    Get PDF
    Interactive compilation was proven to be a practical tool in the production of Chart 2011 and Chart 2048. The successful completion of these two charts has shown that applying computer-assisted techniques as an integral part of the construction of nautical charts is an effective alternative to traditional chart compilation. The advent of fast colour graphics devices and the increasing availability of digital hydrographic data requires innovative solutions to manage and use these data effectively

    Microstructural abnormalities in deep and superficial white matter in youths with mild traumatic brain injury

    Get PDF
    BACKGROUND: Diffusion Tensor Imaging (DTI) studies of traumatic brain injury (TBI) have focused on alterations in microstructural features of deep white matter fibers (DWM), though post-mortem studies have demonstrated that injured axons are often observed at the gray-white matter interface where superficial white matter fibers (SWM) mediate local connectivity. OBJECTIVES: To examine microstructural alterations in SWM and DWM in youths with a history of mild TBI and examine the relationship between white matter alterations and attention. METHODS: Using DTIDWM fractional anisotropy (FA) and SWM FA in youths with mild TBI (TBI, n=63) were compared to typically developing and psychopathology matched control groups (n=63 each). Following tract-based spatial statistics, SWM FA was assessed by applying a probabilistic tractography derived SWM mask, and DWM FA was captured with a white matter fiber tract mask. Voxel-wise z-score calculations were used to derive a count of voxels with abnormally high and low FA for each participant. Analyses examined DWM and SWM FA differences between TBI and control groups, the relationship between attention and DWM and SWM FA and the relative susceptibility of SWM compared to DWM FA to alterations associated with mild TBI. RESULTS: Case-based comparisons revealed more voxels with low FA and fewer voxels with high FA in SWM in youths with mild TBI compared to both control groups. Equivalent comparisons in DWM revealed a similar pattern of results, however, no group differences for low FA in DWM were found between mild TBI and the control group with matched psychopathology. Slower processing speed on the attention task was correlated with the number of voxels with low FA in SWM in youths with mild TBI. CONCLUSIONS: Within a sample of youths with a history of mild TBI, this study identified abnormalities in SWM microstructure associated with processing speed. The majority of DTI studies of TBI have focused on long-range DWM fiber tracts, often overlooking the SWM fiber type

    Branching ratios of the decays of psi(3770) and Upsilon(10580) into light hadrons

    Full text link
    Taking into account the new data on the full width of D^{\ast\pm}(2010) and the mass difference of the charged and neutral beauty mesons B^\pm, B^0,\bar B^0, the branching ratios of the decays psi(3770), Upsilon(10580) to pi^+pi^-, K bar K, rho(omega)pi, rho(omega)eta, rho(omega)eta^prime, K^ast bar K+ c.c, rho^+ rho^-, and K^ast bar K^ast are re-evaluated in the model in which the Okubo-Zweig-Iizuka rule is violated due to the real intermediate state D\bar D in case of psi(3770) and B\bar B in case of Upsilon(10580). The inclusive annihilation of psi(3770) and Upsilon(10580) into light hadrons is discussed.Comment: 10 page

    Extrapolation of K to \pi\pi decay amplitude

    Full text link
    We examine the uncertainties involved in the off-mass-shell extrapolation of the K→ππK\rightarrow \pi\pi decay amplitude with emphasis on those aspects that have so far been overlooked or ignored. Among them are initial-state interactions, choice of the extrapolated kaon field, and the relation between the asymptotic behavior and the zeros of the decay amplitude. In the inelastic region the phase of the decay amplitude cannot be determined by strong interaction alone and even its asymptotic value cannot be deduced from experiment. More a fundamental issue is intrinsic nonuniqueness of off-shell values of hadronic matrix elements in general. Though we are hampered with complexity of intermediate-energy meson interactions, we attempt to obtain a quantitative idea of the uncertainties due to the inelastic region and find that they can be much larger than more optimistic views portray.Comment: 16 pages with 5 eps figures in REVTE

    Sign problems, noise, and chiral symmetry breaking in a QCD-like theory

    Full text link
    The Nambu-Jona-Lasinio model reduced to 2+1 dimensions has two different path integral formulations: at finite chemical potential one formulation has a severe sign problem similar to that found in QCD, while the other does not. At large N, where N is the number of flavors, one can compute the probability distributions of fermion correlators analytically in both formulations. In the former case one finds a broad distribution with small mean; in the latter one finds a heavy tailed positive distribution amenable to the cumulant expansion techniques developed in earlier work. We speculate on the implications of this model for QCD.Comment: 16 pages, 5 figures; Published version with minor changes from the origina
    • …
    corecore