227 research outputs found

    Arabidopsis Ovate Family Proteins, a Novel Transcriptional Repressor Family, Control Multiple Aspects of Plant Growth and Development

    Get PDF
    , AtOFP4 has been shown to regulate secondary cell wall formation by interact with KNOTTED1-LIKE HOMEODOMAIN PROTEIN 7 (KNAT7), and AtOFP5 has been shown to regulate the activity of a BEL1-LIKEHOMEODOMAIN 1(BLH1)-KNAT3 complex during early embryo sac development, but little is known about the function of other AtOFPs. genes may also have diverse functions in regulating plant growth and development. Further analysis suggested that AtOFP1 regulates cotyledon development in a postembryonic manner, and global transcript profiling revealed that it suppress the expression of many other genes.Our results showed that AtOFPs function as transcriptional repressors and they regulate multiple aspects of plant growth and development. These results provided the first overview of a previously unknown transcriptional repressor family, and revealed their possible roles in plant growth and development

    The growth of northeastern Tibet and its relevance to large-scale continental geodynamics: A review of recent studies

    Get PDF
    Recent studies of the northeastern part of the Tibetan Plateau have called attention to two emerging views of how the Tibetan Plateau has grown. First, deformation in northern Tibet began essentially at the time of collision with India, not 10–20 Myr later as might be expected if the locus of activity migrated northward as India penetrated the rest of Eurasia. Thus, the north-south dimensions of the Tibetan Plateau were set mainly by differences in lithospheric strength, with strong lithosphere beneath India and the Tarim and Qaidam basins steadily encroaching on one another as the region between them, the present-day Tibetan Plateau, deformed, and its north-south dimension became narrower. Second, abundant evidence calls for acceleration of deformation, including the formation of new faults, in northeastern Tibet since ~15 Ma and a less precisely dated change in orientation of crustal shortening since ~20 Ma. This reorientation of crustal shortening and roughly concurrent outward growth of high terrain, which swings from NNE-SSW in northern Tibet to more NE-SW and even ENE-WSW in the easternmost part of northeastern Tibet, are likely to be, in part, a consequence of crustal thickening within the high Tibetan Plateau reaching a limit, and the locus of continued shortening then migrating to the northeastern and eastern flanks. These changes in rates and orientation also could result from removal of some or all mantle lithosphere and increased gravitational potential energy per unit area and from a weakening of crustal material so that it could flow in response to pressure gradients set by evolving differences in elevation

    A Small RNA Controls Expression of the Chitinase ChiA in Listeria monocytogenes

    Get PDF
    In recent years, more than 60 small RNAs (sRNAs) have been identified in the gram-positive human pathogen Listeria monocytogenes, but their putative roles and mechanisms of action remain largely unknown. The sRNA LhrA was recently shown to be a post-transcriptional regulator of a single gene, lmo0850, which encodes a small protein of unknown function. LhrA controls the translation and degradation of the lmo0850 mRNA by an antisense mechanism, and it depends on the RNA chaperone Hfq for efficient binding to its target. In the present study, we sought to gain more insight into the functional role of LhrA in L. monocytogenes. To this end, we determined the effects of LhrA on global-wide gene expression. We observed that nearly 300 genes in L. monocytogenes are either positively or negatively affected by LhrA. Among these genes, we identified lmo0302 and chiA as direct targets of LhrA, thus establishing LhrA as a multiple target regulator. Lmo0302 encodes a hypothetical protein with no known function, whereas chiA encodes one of two chitinases present in L. monocytogenes. We show here that LhrA acts as a post-transcriptional regulator of lmo0302 and chiA by interfering with ribosome recruitment, and we provide evidence that both LhrA and Hfq act to down-regulate the expression of lmo0302 and chiA. Furthermore, in vitro binding experiments show that Hfq stimulates the base pairing of LhrA to chiA mRNA. Finally, we demonstrate that LhrA has a negative effect on the chitinolytic activity of L. monocytogenes. In marked contrast to this, we found that Hfq has a stimulating effect on the chitinolytic activity, suggesting that Hfq plays multiple roles in the complex regulatory pathways controlling the chitinases of L. monocytogenes

    Benchmarking natural-language parsers for biological applications using dependency graphs

    Get PDF
    BACKGROUND: Interest is growing in the application of syntactic parsers to natural language processing problems in biology, but assessing their performance is difficult because differences in linguistic convention can falsely appear to be errors. We present a method for evaluating their accuracy using an intermediate representation based on dependency graphs, in which the semantic relationships important in most information extraction tasks are closer to the surface. We also demonstrate how this method can be easily tailored to various application-driven criteria. RESULTS: Using the GENIA corpus as a gold standard, we tested four open-source parsers which have been used in bioinformatics projects. We first present overall performance measures, and test the two leading tools, the Charniak-Lease and Bikel parsers, on subtasks tailored to reflect the requirements of a system for extracting gene expression relationships. These two tools clearly outperform the other parsers in the evaluation, and achieve accuracy levels comparable to or exceeding native dependency parsers on similar tasks in previous biological evaluations. CONCLUSION: Evaluating using dependency graphs allows parsers to be tested easily on criteria chosen according to the semantics of particular biological applications, drawing attention to important mistakes and soaking up many insignificant differences that would otherwise be reported as errors. Generating high-accuracy dependency graphs from the output of phrase-structure parsers also provides access to the more detailed syntax trees that are used in several natural-language processing techniques

    Social Intelligence and Academic Achievement as Predictors of Adolescent Popularity

    Get PDF
    This study compared the effects of social intelligence and cognitive intelligence, as measured by academic achievement, on adolescent popularity in two school contexts. A distinction was made between sociometric popularity, a measure of acceptance, and perceived popularity, a measure of social dominance. Participants were 512, 14–15 year-old adolescents (56% girls, 44% boys) in vocational and college preparatory schools in Northwestern Europe. Perceived popularity was significantly related to social intelligence, but not to academic achievement, in both contexts. Sociometric popularity was predicted by an interaction between academic achievement and social intelligence, further qualified by school context. Whereas college bound students gained sociometric popularity by excelling both socially and academically, vocational students benefited from doing well either socially or academically, but not in combination. The implications of these findings were discussed

    Corpus annotation for mining biomedical events from literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advanced Text Mining (TM) such as semantic enrichment of papers, event or relation extraction, and intelligent Question Answering have increasingly attracted attention in the bio-medical domain. For such attempts to succeed, text annotation from the biological point of view is indispensable. However, due to the complexity of the task, semantic annotation has never been tried on a large scale, apart from relatively simple term annotation.</p> <p>Results</p> <p>We have completed a new type of semantic annotation, event annotation, which is an addition to the existing annotations in the GENIA corpus. The corpus has already been annotated with POS (Parts of Speech), syntactic trees, terms, etc. The new annotation was made on half of the GENIA corpus, consisting of 1,000 Medline abstracts. It contains 9,372 sentences in which 36,114 events are identified. The major challenges during event annotation were (1) to design a scheme of annotation which meets specific requirements of text annotation, (2) to achieve biology-oriented annotation which reflect biologists' interpretation of text, and (3) to ensure the homogeneity of annotation quality across annotators. To meet these challenges, we introduced new concepts such as Single-facet Annotation and Semantic Typing, which have collectively contributed to successful completion of a large scale annotation.</p> <p>Conclusion</p> <p>The resulting event-annotated corpus is the largest and one of the best in quality among similar annotation efforts. We expect it to become a valuable resource for NLP (Natural Language Processing)-based TM in the bio-medical domain.</p

    The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function

    Get PDF
    BACKGROUND: The WD motif (also known as the Trp-Asp or WD40 motif) is found in a multitude of eukaryotic proteins involved in a variety of cellular processes. Where studied, repeated WD motifs act as a site for protein-protein interaction, and proteins containing WD repeats (WDRs) are known to serve as platforms for the assembly of protein complexes or mediators of transient interplay among other proteins. In the model plant Arabidopsis thaliana, members of this superfamily are increasingly being recognized as key regulators of plant-specific developmental events. RESULTS: We analyzed the predicted complement of WDR proteins from Arabidopsis, and compared this to those from budding yeast, fruit fly and human to illustrate both conservation and divergence in structure and function. This analysis identified 237 potential Arabidopsis proteins containing four or more recognizable copies of the motif. These were classified into 143 distinct families, 49 of which contained more than one Arabidopsis member. Approximately 113 of these families or individual proteins showed clear homology with WDR proteins from the other eukaryotes analyzed. Where conservation was found, it often extended across all of these organisms, suggesting that many of these proteins are linked to basic cellular mechanisms. The functional characterization of conserved WDR proteins in Arabidopsis reveals that these proteins help adapt basic mechanisms for plant-specific processes. CONCLUSIONS: Our results show that most Arabidopsis WDR proteins are strongly conserved across eukaryotes, including those that have been found to play key roles in plant-specific processes, with diversity in function conferred at least in part by divergence in upstream signaling pathways, downstream regulatory targets and /or structure outside of the WDR regions

    Biogeographical Survey Identifies Consistent Alternative Physiological Optima and a Minor Role for Environmental Drivers in Maintaining a Polymorphism

    Get PDF
    The contribution of adaptive mechanisms in maintaining genetic polymorphisms is still debated in many systems. To understand the contribution of selective factors in maintaining polymorphism, we investigated large-scale (>1000 km) geographic variation in morph frequencies and fitness-related physiological traits in the damselfly Nehalennia irene. As fitness-related physiological traits, we investigated investment in immune function (phenoloxidase activity), energy storage and fecundity (abdomen protein and lipid content), and flight muscles (thorax protein content). In the first part of the study, our aim was to identify selective agents maintaining the large-scale spatial variation in morph frequencies. Morph frequencies varied considerably among populations, but, in contrast to expectation, in a geographically unstructured way. Furthermore, frequencies co-varied only weakly with the numerous investigated ecological parameters. This suggests that spatial frequency patterns are driven by stochastic processes, or alternatively, are consequence of highly variable and currently unidentified ecological conditions. In line with this, the investigated ecological parameters did not affect the fitness-related physiological traits differently in both morphs. In the second part of the study, we aimed at identifying trade-offs between fitness-related physiological traits that may contribute to the local maintenance of both colour morphs by defining alternative phenotypic optima, and test the spatial consistency of such trade-off patterns. The female morph with higher levels of phenoloxidase activity had a lower thorax protein content, and vice versa, suggesting a trade-off between investments in immune function and in flight muscles. This physiological trade-off was consistent across the geographical scale studied and supports widespread correlational selection, possibly driven by male harassment, favouring alternative trait combinations in both female morphs
    corecore