7 research outputs found

    The systems biology format converter

    Get PDF
    BACKGROUND: Interoperability between formats is a recurring problem in systems biology research. Many tools have been developed to convert computational models from one format to another. However, they have been developed independently, resulting in redundancy of efforts and lack of synergy. RESULTS: Here we present the System Biology Format Converter (SBFC), which provide a generic framework to potentially convert any format into another. The framework currently includes several converters translating between the following formats: SBML, BioPAX, SBGN-ML, Matlab, Octave, XPP, GPML, Dot, MDL and APM. This software is written in Java and can be used as a standalone executable or web service. CONCLUSIONS: The SBFC framework is an evolving software project. Existing converters can be used and improved, and new converters can be easily added, making SBFC useful to both modellers and developers. The source code and documentation of the framework are freely available from the project web site. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1000-2) contains supplementary material, which is available to authorized users

    OREMPdb: a semantic dictionary of computational pathway models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The information coming from biomedical ontologies and computational pathway models is expanding continuously: research communities keep this process up and their advances are generally shared by means of dedicated resources published on the web. In fact, such models are shared to provide the characterization of molecular processes, while biomedical ontologies detail a semantic context to the majority of those pathways. Recent advances in both fields pave the way for a scalable information integration based on aggregate knowledge repositories, but the lack of overall standard formats impedes this progress. Indeed, having different objectives and different abstraction levels, most of these resources "speak" different languages. Semantic web technologies are here explored as a means to address some of these problems.</p> <p>Methods</p> <p>Employing an extensible collection of interpreters, we developed OREMP (Ontology Reasoning Engine for Molecular Pathways), a system that abstracts the information from different resources and combines them together into a coherent ontology. Continuing this effort we present OREMPdb; once different pathways are fed into OREMP, species are linked to the external ontologies referred and to reactions in which they participate. Exploiting these links, the system builds species-sets, which encapsulate species that operate together. Composing all of the reactions together, the system computes all of the reaction paths from-and-to all of the species-sets.</p> <p>Results</p> <p>OREMP has been applied to the curated branch of BioModels (2011/04/15 release) which overall contains 326 models, 9244 reactions, and 5636 species. OREMPdb is the semantic dictionary created as a result, which is made of 7360 species-sets. For each one of these sets, OREMPdb links the original pathway and the link to the original paper where this information first appeared. </p

    Completing SBGN-AF Networks by Logic-Based Hypothesis Finding

    No full text
    International audienceThis study considers formal methods for finding unknown interactions of incomplete molecular networks using microarray profiles. In systems biology, a challenging problem lies in the growing scale and complexity of molecular networks. Along with high-throughput experimental tools, it is not straightforward to reconstruct huge and complicated networks using observed data by hand. Thus, we address the completion problem of our target networks represented by a standard markup language, called SBGN (in particular, Activity Flow). Our proposed method is based on logic-based hypothesis finding techniques; given an input SBGN network and its profile data, missing interactions can be logically generated as hypotheses by the proposed method. In this paper, we also show empirical results that demonstrate how the proposed method works with a real network involved in the glucose repression of S. cerevisiae
    corecore