61 research outputs found

    Initial Decomposition Reactions of Bicyclo-HMX [BCHMX or cis

    Full text link
    We investigated the initial chemical reactions of BCHMX [cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole] with the following procedure. First we used density functional theory molecular dynamics simulations (DFT-MD) on the periodic crystal to discover the initial reaction steps. This allowed us to determine the most important reactions through DFT-MD simulations at high temperatures. Then we started with the midpoint of the reaction (unimolecular or bimolecular) from the DFT-MD and carried out higher quality finite cluster DFT calculations to locate the true transition state of the reaction, followed by calculations along the reaction path to determine the initial and final states. We find that for the noncompressed BCHMX the nitro-aci isomerization reaction occurs earlier than the NO2-releasing reaction, while for compressed BCHMX intermolecular hydrogen-transfer and bimolecular NO2-releasing reactions occur earlier than the nitrous acid (HONO)-releasing reaction. At high pressures, the initial reaction involves intermolecular hydrogen transfer rather than intramolecular hydrogen transfer, and the intermolecular hydrogen transfer decreases the reaction barrier for release of NO2 by ∼7 kcal/mol. Thus, the HONO-releasing reaction takes place more easily in compressed BCHMX. We find that this reaction barrier is 10 kcal/mol lower than the unimolecular NO2 release and ∼3 kcal/mol lower than the bimolecular NO2 release. This rationalizes the origin of the higher sensitivity of BCHMX compared to RDX (1,3,5-trinitrohexahydro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine). We suggest changes in BCHMX that might help decrease the sensitivity by avoiding the intermolecular hydrogen-transfer and HONO-releasing reaction

    Microbial mediation of benthic biogenic silica dissolution

    Get PDF
    Pore water profiles from 24 stations in the South Atlantic (located in the Guinea, Angola, Cape, Guyana, and Argentine basins) show good correlations of oxygen and silicon, suggesting microbially mediated dissolution of biogenic silica. We used simple analytical transport and reaction models to show the tight coupling of the reconstructed process kinetics of aerobic respiration and silicon regeneration. A generic transport and reaction model successfully reproduced the majority of Si pore water profiles from aerobic respiration rates, confirming that the dissolution of biogenic silica (BSi) occurs proportionally to O 2 consumption. Possibly limited to well-oxygenated sediments poor in BSi, benthic Si fluxes can be inferred from O 2 uptake with satisfactory accuracy. Compared to aerobic respiration kinetics, the solubility of BSi emerged as a less influential parameter for silicon regeneration. Understanding the role of bacteria for silicon regeneration requires further investigations, some of which are outlined. The proposed aerobic respiration control of benthic silicon cycling is suitable for benthic–pelagic models. The empirical relation of BSi dissolution to aerobic respiration can be used for regionalization assessments and estimates of the silicon budget to increase the understanding of global primary and export production patterns
    • …
    corecore