37,464 research outputs found
Growth of graphene on 6H-SiC by molecular dynamics simulation
Classical molecular-dynamics simulations were carried out to study epitaxial
growth of graphene on 6H-SiC(0001) substrate. It was found that there exists a
threshold annealing temperature above which we observe formation of graphitic
structure on the substrate. To check the sensitivity of the simulation results,
we tested two empirical potentials and evaluated their reliability by the
calculated characteristics of graphene, its carbon-carbon bond-length, pair
correlation function, and binding energy.Comment: 7 pages, 5 figure
Recommended from our members
Coronavirus mRNA synthesis: identification of novel transcription initiation signals which are differentially regulated by different leader sequences.
The mRNA synthesis of mouse hepatitis virus (MHV) has been proposed to be the result of interaction between the leader RNA and the intergenic sites. Previously, we have identified a transcription initiation site (for mRNA 2-1), which is more efficiently transcribed by viruses containing two copies of UCUAA sequence in the leader RNA than by those with three copies. In this study, we have identified several sites which are regulated in the opposite way, namely, they are efficiently transcribed by the leader RNA with three UCUAA copies but not by those with two copies. These sites were characterized by primer extension and amplification by polymerase chain reaction. One of these sites is in the gene 3 region of a recombinant virus between A59 and JHM strains of MHV. Another is in the gene 2 region of MHV-1 strain. Both of these sites have a sequence similar to but different from the consensus transcription initiation signal (UCUAAUCUAUC and UUUAAUCUU, as opposed to UCUAAAC). These two novel intergenic sequences are not present in the genome of the JHM strain, consistent with the absence of these mRNAs in the JHM-infected cells. The discovery of this type of transcription initiation site provides additional evidence for the importance of the leader RNA in the transcription initiation of MHV mRNAs
Impact of edge-removal on the centrality betweenness of the best spreaders
The control of epidemic spreading is essential to avoid potential fatal
consequences and also, to lessen unforeseen socio-economic impact. The need for
effective control is exemplified during the severe acute respiratory syndrome
(SARS) in 2003, which has inflicted near to a thousand deaths as well as
bankruptcies of airlines and related businesses. In this article, we examine
the efficacy of control strategies on the propagation of infectious diseases
based on removing connections within real world airline network with the
associated economic and social costs taken into account through defining
appropriate quantitative measures. We uncover the surprising results that
removing less busy connections can be far more effective in hindering the
spread of the disease than removing the more popular connections. Since
disconnecting the less popular routes tend to incur less socio-economic cost,
our finding suggests the possibility of trading minimal reduction in
connectivity of an important hub with efficiencies in epidemic control. In
particular, we demonstrate the performance of various local epidemic control
strategies, and show how our approach can predict their cost effectiveness
through the spreading control characteristics.Comment: 11 pages, 4 figure
Recommended from our members
Biosynthesis, structure, and biological activities of envelope protein gp65 of murine coronavirus.
We have previously shown that gp65 (E3) is a virion structural protein which varies widely in quantity among different strains of mouse hepatitis virus (MHV). In this study, the biosynthetic pathway and possible biological activities of this protein were examined. The glycosylation of gp65 in virus-infected cells was inhibited by tunicamycin but not by monensin, suggesting that it contains an N-glycosidic linkage. Glycosylation is cotranslational and appears to be complete before the glycoprotein reaches the Golgi complex. Pulse-chase experiments showed that this protein decreased in size after 30 min of chase, suggesting that the carbohydrate chains of gp65 undergo trimming during its transport across the Golgi. This interpretation is supported by the endoglycosidase treatment of gp65, which showed that the peptide backbone of gp65 did not decrease in size after pulse-chase periods. This maturation pathway is distinct from that of the E1 or E2 glycoproteins. Partial endoglycosidase treatment indicated that gp65 contains 9 to 10 carbohydrate side chains; thus, almost all of the potential glycosylation sites of gp65 were glycosylated. In vitro translation studies coupled with protease digestion suggest that gp65 is an integral membrane protein. The presence of gp65 in the virion is correlated with the presence of an acetylesterase activity. No hemagglutinin activity was detected
DDSL: Efficient Subgraph Listing on Distributed and Dynamic Graphs
Subgraph listing is a fundamental problem in graph theory and has wide
applications in areas like sociology, chemistry, and social networks. Modern
graphs can usually be large-scale as well as highly dynamic, which challenges
the efficiency of existing subgraph listing algorithms. Recent works have shown
the benefits of partitioning and processing big graphs in a distributed system,
however, there is only few work targets subgraph listing on dynamic graphs in a
distributed environment. In this paper, we propose an efficient approach,
called Distributed and Dynamic Subgraph Listing (DDSL), which can incrementally
update the results instead of running from scratch. DDSL follows a general
distributed join framework. In this framework, we use a Neighbor-Preserved
storage for data graphs, which takes bounded extra space and supports dynamic
updating. After that, we propose a comprehensive cost model to estimate the I/O
cost of listing subgraphs. Then based on this cost model, we develop an
algorithm to find the optimal join tree for a given pattern. To handle dynamic
graphs, we propose an efficient left-deep join algorithm to incrementally
update the join results. Extensive experiments are conducted on real-world
datasets. The results show that DDSL outperforms existing methods in dealing
with both static dynamic graphs in terms of the responding time
- …