31 research outputs found
Hyperactive S6K1 Mediates Oxidative Stress and Endothelial Dysfunction in Aging: Inhibition by Resveratrol
Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20–24 months) as compared to the young animals (1–3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease
Vascular O2.‐ and H2O2 production and oxidative stress resistance in two closely related rodent species with disparate longevity
Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats
Increased availability of angiotensin AT 1 receptors leads to sustained arterial constriction to angiotensin II in diabetes - role for Rho-kinase activation.
BACKGROUND AND PURPOSE: Antagonists of angiotensin AT(1) receptors elicit beneficial vascular effects in diabetes mellitus. We hypothesized that diabetes induces sustained availability of AT(1) receptors, causing enhanced arterial constriction to angiotensin II. EXPERIMENTAL APPROACH: To assess functional availability of AT(1) receptors, constrictions to successive applications of angiotensin II were measured in isolated skeletal muscle resistance arteries (∼150 µm) of Zucker diabetic fatty (ZDF) rats and of their controls (+/Fa), exposed acutely to high glucose concentrations (HG, 25 mM, 1 h). AT(1) receptors on cell membrane surface were measured by immunofluorescence. KEY RESULTS: Angiotensin II-induced constrictions to first applications were greater in arteries of ZDF rats (maximum: 82 ± 3% original diameter) than in those from +/Fa rats (61 ± 5%). Constrictions to repeated angiotensin II administration were decreased in +/Fa arteries (20 ± 6%), but were maintained in ZDF arteries (67 ± 4%) and in +/Fa arteries vessels exposed to HG (65 ± 6%). In ZDF arteries and in HG-exposed +/Fa arteries, Rho-kinase activities were enhanced. The Rho-kinase inhibitor, Y27632 inhibited sustained constrictions to angiotensin II in ZDF arteries and in +/Fa arteries exposed to HG. Levels of surface AT(1) receptors on cultured vascular smooth muscle cells (VSMCs) were decreased by angiotensin II but were maintained in VSMCs exposed to HG. In VSMCs exposed to HG and treated with Y27632, angiotensin II decreased surface AT(1) receptors. CONCLUSIONS AND IMPLICATIONS: In diabetes, elevated glucose concentrations activate Rho-kinase which inhibits internalization or facilitates recycling of AT(1) receptors, leading to increased functional availability of AT(1) receptors and sustained angiotensin II-induced arterial constriction
Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats
Downregulation of bone morphogenetic protein 4 expression in coronary arterial endothelial cells: role of shear stress and the cAMP/protein kinase A pathway
Bone morphogenetic protein 4 (BMP-4) is a transforming growth factor beta family member cytokine that exerts proinflammatory effects on the endothelium and is likely to play a role in atherogenesis. Recent studies suggested that atheroprotective levels of shear stress control endothelial BMP-4 expression; however, the underlying mechanisms remained unknown. We found that shear stress downregulated BMP-4 expression in human and rat coronary arterial endothelial cells (CAECs) as well as in cultured mesenteric arterioles, although it had no effect on the expression of BMP-2, a related cytokine. In human coronary arterial endothelial cells, 8-bromo-cAMP, the adenylate cyclase activator forskolin, or a cAMP-dependent protein kinase (PKA) activator effectively decreased BMP-4 expression, mimicking the effects of shear stress. Indeed, shear stress induced the nuclear translocation of PKA-c, and inhibition of PKA attenuated the effects of shear stress and forskolin on BMP-4 expression. RNA decay assay and BMP-4 promoter-driven luciferase reporter gene assay showed that cAMP regulates BMP-4 expression at the transcriptional level. Laminar shear stress and the cAMP/PKA pathway are important negative regulators of BMP-4 expression in the vascular endothelium. Because BMP-4 elicits endothelial activation and dysfunction, hypertension, and vascular calcification, inhibition of BMP-4 expression by shear stress and the cAMP/PKA pathway is likely to exert antiatherogenic and vasculoprotective effect
Effect of hyperoxic resuscitation on propensity of germinal matrix haemorrhage and cerebral injury
Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice.
Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice
Type II diabetes increases mitochondrial DNA mutations in the left ventricle of the Goto-Kakizaki diabetic rat
Mitochondrial dysfunction has a significant role in the development of diabetic cardiomyopathy. Mitochondrial oxidant stress has been accepted as the singular cause of mitochondrial DNA (mtDNA) damage as an underlying cause of mitochondrial dysfunction. However, separate from a direct effect on mtDNA integrity, diabetic-induced increases in oxidant stress alter mitochondrial topoisomerase function to propagate mtDNA mutations as a contributor to mitochondrial dysfunction. Both glucose-challenged neonatal cardiomyocytes and the diabetic Goto-Kakizaki (GK) rat were studied. In both the GK left ventricle (LV) and in cardiomyocytes, chronically elevated glucose presentation induced a significant increase in mtDNA damage that was accompanied by decreased mitochondrial function. TTGE analysis revealed a number of base pair substitutions in the 3' end of COX3 from GK LV mtDNA that significantly altered the protein sequence. Mitochondrial topoisomerase DNA cleavage activity in isolated mitochondria was significantly increased in the GK LV compared with Wistar controls. Both hydroxycamptothecin, a topoisomerase type 1 inhibitor, and doxorubicin, a topoisomerase type 2 inhibitor, significantly exacerbated the DNA cleavage activity of isolated mitochondrial extracts indicating the presence of multiple functional topoisomerases in the mitochondria. Mitochondrial topoisomerase function was significantly altered in the presence of H(2)O(2) suggesting that separate from a direct effect on mtDNA, oxidant stress mediated type II diabetes-induced alterations of mitochondrial topoisomerase function. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mtDNA integrity and the well being of the diabetic myocardium
