149 research outputs found

    Thermalization of a Lipkin-Meshkov-Glick model coupled to a bosonic bath

    Get PDF
    We derive a Lindblad master equation that approximates the dynamics of a Lipkin-Meshkov-Glick (LMG) model weakly coupled to a bosonic bath. By studying the time evolution of operators under the adjoint master equation we prove that, for large system sizes, these operators attain their thermal equilibrium expectation values in the long-time limit, and we calculate the rate at which these values are approached. Integrability of the LMG model prevents thermalization in the absence of a bath, and our work provides an explicit proof that the bath indeed restores thermalization. Imposing thermalization on this otherwise non-thermalizing model outlines an avenue towards probing the unconventional thermodynamic properties predicted to occur in ultracold-atom-based realizations of the LMG model.Comment: 10 pages, 3 figure

    Eigenvalue distributions from a star product approach

    Full text link
    We use the well-known isomorphism between operator algebras and function spaces equipped with a star product to study the asymptotic properties of certain matrix sequences in which the matrix dimension DD tends to infinity. Our approach is based on the su(2)su(2) coherent states which allow for a systematic 1/D expansion of the star product. This produces a trace formula for functions of the matrix sequence elements in the large-DD limit which includes higher order (finite-DD) corrections. From this a variety of analytic results pertaining to the asymptotic properties of the density of states, eigenstates and expectation values associated with the matrix sequence follows. It is shown how new and existing results in the settings of collective spin systems and orthogonal polynomial sequences can be readily obtained as special cases. In particular, this approach allows for the calculation of higher order corrections to the zero distributions of a large class of orthogonal polynomials.Comment: 25 pages, 8 figure

    Scattering in three-dimensional fuzzy space

    Get PDF
    We develop scattering theory in a non-commutative space defined by a su(2)su(2) coordinate algebra. By introducing a positive operator valued measure as a replacement for strong position measurements, we are able to derive explicit expressions for the probability current, differential and total cross-sections. We show that at low incident energies the kinematics of these expressions is identical to that of commutative scattering theory. The consequences of spacial non-commutativity are found to be more pronounced at the dynamical level where, even at low incident energies, the phase shifts of the partial waves can deviate strongly from commutative results. This is demonstrated for scattering from a spherical well. The impact of non-commutativity on the well's spectrum and on the properties of its bound and scattering states are considered in detail. It is found that for sufficiently large well-depths the potential effectively becomes repulsive and that the cross-section tends towards that of hard sphere scattering. This can occur even at low incident energies when the particle's wave-length inside the well becomes comparable to the non-commutative length-scale.Comment: 12 pages, 6 figure

    Nutritional management of encapsulating peritoneal sclerosis with intradialytic parenteral nutrition

    Get PDF
    No Abstract

    Spectrum of the three dimensional fuzzy well

    Full text link
    We develop the formalism of quantum mechanics on three dimensional fuzzy space and solve the Schr\"odinger equation for a free particle, finite and infinite fuzzy wells. We show that all results reduce to the appropriate commutative limits. A high energy cut-off is found for the free particle spectrum, which also results in the modification of the high energy dispersion relation. An ultra-violet/infra-red duality is manifest in the free particle spectrum. The finite well also has an upper bound on the possible energy eigenvalues. The phase shifts due to scattering around the finite fuzzy potential well have been calculated

    Duality constructions from quantum state manifolds

    Get PDF
    The formalism of quantum state space geometry on manifolds of generalised coherent states is proposed as a natural setting for the construction of geometric dual descriptions of non-relativistic quantum systems. These state manifolds are equipped with natural Riemannian and symplectic structures derived from the Hilbert space inner product. This approach allows for the systematic construction of geometries which reflect the dynamical symmetries of the quantum system under consideration. We analyse here in detail the two dimensional case and demonstrate how existing results in the AdS_2/CFT_1 context can be understood within this framework. We show how the radial/bulk coordinate emerges as an energy scale associated with a regularisation procedure and find that, under quite general conditions, these state manifolds are asymptotically anti-de Sitter solutions of a class of classical dilaton gravity models. For the model of conformal quantum mechanics proposed by de Alfaro et. al. the corresponding state manifold is seen to be exactly AdS_2 with a scalar curvature determined by the representation of the symmetry algebra. It is also shown that the dilaton field itself is given by the quantum mechanical expectation values of the dynamical symmetry generators and as a result exhibits dynamics equivalent to that of a conformal mechanical system.Comment: 25 Pages, References Adde

    Pharmacotherapy during pregnancy, childbirth and lactation: points and principles to consider (a 2015 update)

    Get PDF
    Pregnancy, childbirth and lactation pose unique challenges in terms of drug therapy. The pregnant mother and her unborn child are exceptionally vulnerable from a physiological, clinical and ethical standpoint. This warrants careful consideration with respect to a number of important aspects, which could firstly influence the decision to opt for drug therapy, and secondly, could influence the specific agent selected for each indication. The US Food and Drug Administration has introduced changes to the content and format of information presented in prescription drug labelling to assist healthcare providers when assessing benefit versus risk, and in the subsequent counselling of pregnant woman and nursing mothers who need to take medication. This change came into effect at the end of June 2015. This article provides an overview of these important aspects.Keywords: embryo, foetus, lactation, neonate, pregnanc

    The entropy of dense non-commutative fermion gases

    Full text link
    We investigate the properties of two- and three-dimensional non-commutative fermion gases with fixed total z-component of angular momentum, J_z, and at high density for the simplest form of non-commutativity involving constant spatial commutators. Analytic expressions for the entropy and pressure are found. The entropy exhibits non-extensive behaviour while the pressure reveals the presence of incompressibility in two, but not in three dimensions. Remarkably, for two-dimensional systems close to the incompressible density, the entropy is proportional to the square root of the system size, i.e., for such systems the number of microscopic degrees of freedom is determined by the circumference, rather than the area (size) of the system. The absence of incompressibility in three dimensions, and subsequently also the absence of a scaling law for the entropy analogous to the one found in two dimensions, is attributed to the form of the non-commutativity used here, the breaking of the rotational symmetry it implies and the subsequent constraint on J_z, rather than the angular momentum J. Restoring the rotational symmetry while constraining the total angular momentum J seems to be crucial for incompressibility in three dimensions. We briefly discuss ways in which this may be done and point out possible obstacles.Comment: 15 pages, 10 figure
    corecore