372 research outputs found

    Differential rotation measurement of soft X-Ray corona

    Full text link
    The aim of this paper is to study the latitudinal variation in the solar rotation in soft X-ray corona. The time series bins are formed on different latitude regions of the solar full disk (SFD) images that extend from 80 degree South to 80 degree North. These SFD images are obtained with the soft X-ray telescope (SXT) on board the Yohkoh solar observatory. The autocorrelation analyses are performed with the time series that track the SXR flux modulations in the solar corona. Then for each year, extending from 1992 to 2001, we obtain the coronal sidereal rotation rate as a function of the latitude. The present analysis from SXR radiation reveals that; (i) the equatorial rotation rate of the corona is comparable to the rotation rate of the photosphere and the chromosphere, (ii) the differential profile with respect to the latitude varies throughout the period of the study; it is more in the year 1999 and least in 1994 and (iii) the equatorial rotation period varies systematically with sunspot numbers and indicates its dependence on the phases of the solar activity cycle.Comment: 9 Pages, 4 Figures, Accepted for Publication in MNRA

    Optically tuned dimensionality crossover in photocarrier-doped SrTiO3_3: onset of weak localization

    Full text link
    We report magnetotransport properties of photogenerated electrons in undoped SrTiO3_3 single crystals under ultraviolet illumination down to 2 K. By tuning the light intensity, the steady state carrier density can be controlled, while tuning the wavelength controls the effective electronic thickness by modulating the optical penetration depth. At short wavelengths, when the sheet conductance is close to the two-dimensional Mott minimum conductivity we have observed critical behavior characteristic of weak localization. Negative magnetoresistance at low magnetic field is highly anisotropic, indicating quasi-two-dimensional electronic transport. The high mobility of photogenerated electrons in SrTiO3_3 allows continuous tuning of the effective electronic dimensionality by photoexcitation.Comment: 7 pages, 7 figure

    Quantum Hall effect on top and bottom surface states of topological insulator (Bi_(1−x)Sb_x)₂Te₃ films

    Get PDF
    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi₂Se₃, Bi₂Te₃, Sb₂Te₃ and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi_(1−x)Sb_x)₂Te₃ films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics

    Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    Get PDF
    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θAHE≈20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system

    Quantum Hall effect on top and bottom surface states of topological insulator (Bi_(1−x)Sb_x)₂Te₃ films

    Get PDF
    The three-dimensional topological insulator is a novel state of matter characterized by two-dimensional metallic Dirac states on its surface. To verify the topological nature of the surface states, Bi-based chalcogenides such as Bi₂Se₃, Bi₂Te₃, Sb₂Te₃ and their combined/mixed compounds have been intensively studied. Here, we report the realization of the quantum Hall effect on the surface Dirac states in (Bi_(1−x)Sb_x)₂Te₃ films. With electrostatic gate-tuning of the Fermi level in the bulk band gap under magnetic fields, the quantum Hall states with filling factor ±1 are resolved. Furthermore, the appearance of a quantum Hall plateau at filling factor zero reflects a pseudo-spin Hall insulator state when the Fermi level is tuned in between the energy levels of the non-degenerate top and bottom surface Dirac points. The observation of the quantum Hall effect in three-dimensional topological insulator films may pave a way toward topological insulator-based electronics

    A computational framework for bioimaging simulation

    Full text link
    Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.Comment: 57 page

    Observation of anomalous Hall effect in a non-magnetic two-dimensional electron system

    Get PDF
    Anomalous Hall effect, a manifestation of Hall effect occurring in systems without time-reversal symmetry, has been mostly observed in ferromagnetically ordered materials. However, its realization in high-mobility two-dimensional electron system remains elusive, as the incorporation of magnetic moments deteriorates the device performance compared to non-doped structure. Here we observe systematic emergence of anomalous Hall effect in various MgZnO/ZnO heterostructures that exhibit quantum Hall effect. At low temperatures, our nominally non-magnetic heterostructures display an anomalous Hall effect response similar to that of a clean ferromagnetic metal, while keeping a large anomalous Hall effect angle θ_(AHE) ≈ 20°. Such a behaviour is consistent with Giovannini–Kondo model in which the anomalous Hall effect arises from the skew scattering of electrons by localized paramagnetic centres. Our study unveils a new aspect of many-body interactions in two-dimensional electron systems and shows how the anomalous Hall effect can emerge in a non-magnetic system
    • …
    corecore