654 research outputs found

    Quantum fluctuation induced ordered phase in the Blume-Capel model

    Full text link
    We consider the Blume-Capel model with the quantum tunneling between the excited states. We find a magnetically ordered phase transition induced by quantum fluctuation in a model. The model has no phase transition in the corresponding classical case. Usually, quantum fluctuation breaks ordered phase as in the case of the transverse field Ising model. However, in present case, an ordered phase is induced by quantum fluctuation. Moreover, we find a phase transition between a quantum paramagnetic phase and a classical diamagnetic phase at zero temperature. We study the properties of the phase transition by using a mean field approximation (MFA), and then, by a quantum Monte Carlo method to confirm the result of the MFA.Comment: 7 pages, 6 figures, corrected some typo

    Ordered phase and phase transitions in the three-dimensional generalized six-state clock model

    Full text link
    We study the three-dimensional generalized six-state clock model at values of the energy parameters, at which the system is considered to have the same behavior as the stacked triangular antiferromagnetic Ising model and the three-state antiferromagnetic Potts model. First, we investigate ordered phases by using the Monte Carlo twist method (MCTM). We confirmed the existence of an incompletely ordered phase (IOP1) at intermediate temperature, besides the completely ordered phase (COP) at low-temperature. In this intermediate phase, two neighboring states of the six-state model mix, while one of them is selected in the low temperature phase. We examine the fluctuation the mixing rate of the two states in IOP1 and clarify that the mixing rate is very stable around 1:1. The high temperature phase transition is investigated by using non-equilibrium relaxation method (NERM). We estimate the critical exponents beta=0.34(1) and nu=0.66(4). These values are consistent with the 3D-XY universality class. The low temperature phase transition is found to be of first-order by using MCTM and the finite-size-scaling analysis

    Development and Validation of a Specific Stability Indicating High Performance Liquid Chromatographic Method for Valsartan

    Get PDF
    A stability-indicating HPLC assay method has been developed and validated for valsartan in bulk drug and pharmaceutical dosage forms. An isocratic RP-HPLC was achieved on Waters 2695 using Symmetry C18 (250mm × 4.6mm × 5μ) column with the mobile phase consisting of 0.02 mM sodium dihydrogen ortho-phosphate, pH adjusted to 2.5 using ortho-phosphoric acid (solvent A), and acetonitrile (solvent B) in the ratio of 58:42 %v/v. The stress testing of valsartan was carried out under acidic, alkaline, oxidative, thermal, and photolytic conditions. Valsartan was well resolved from its degradation products. The proposed method was validated as per ICH guidelines. The method was found to be suitable for the quality control of valsartan in bulk and pharmaceutical dosage forms as well as the stability-indicating studies

    A Theory of Ferroelectric Phase Transition in SrTiO3_3 induced by Isotope Replacement

    Full text link
    A theory to describe the dielectric anomalies and the ferroelectric phase transition induced by oxygen isotope replacement in SrTiO3_3 is developed. The proposed model gives consistent explanation between apparently contradictory experimental results on macroscopic dielectric measurements versus microscopic lattice dynamical measurements by neutron scattering studies. The essential feature is described by a 3-state quantum order-disorder system characterizing the degenerated excited states in addition to the ground state of TiO6_6 cluster. The effect of isotope replacement is taken into account through the tunneling frequency between the excited states. The dielectric properties are analyzed by the mean field approximation (MFA), which gives qualitative agreements with experimental results throughout full range of the isotope concentration.The phase diagram in the temperature-tunneling frequencycoordinate is studied by a QMC method to confirm the qualitative validity of the MFA analysis.Comment: 26 pages, 8 figure

    Self-Diffusion of a Polymer Chain in a Melt

    Full text link
    Self-diffusion of a polymer chain in a melt is studied by Monte Carlo simulations of the bond fluctuation model, where only the excluded volume interaction is taken into account. Polymer chains, each of which consists of NN segments, are located on an L×L×LL \times L \times L simple cubic lattice under periodic boundary conditions, where each segment occupies 2×2×22 \times 2 \times 2 unit cells. The results for N=32,48,64,96,128,192,256,384N=32, 48, 64, 96, 128, 192, 256, 384 and 512 at the volume fraction ϕ0.5\phi \simeq 0.5 are reported, where L=128L = 128 for N256N \leq 256 and L=192 for N384N \geq 384. The NN-dependence of the self-diffusion constant DD is examined. Here, DD is estimated from the mean square displacements of the center of mass of a single polymer chain at the times larger than the longest relaxation time. From the data for N=256N = 256, 384 and 512, the apparent exponent xdx_{\rm d}, which describes the apparent power law dependence of DD on NN as DNxdD \propto N^{- x_{\rm d}}, is estimated as xd2.4x_{\rm d} \simeq 2.4. The ratio Dτ/D \tau / seems to be a constant for N=192,256,384N = 192, 256, 384 and 512, where τ\tau and denote the longest relaxation time and the mean square end-to-end distance, respectively.Comment: 4 pages, 3 figures, submitted to J. Phys. Soc. Jp

    Superconductivity in the Ferroquadrupolar State in the Quadrupolar Kondo Lattice PrTi2_2Al20_{20}

    Full text link
    The cubic compound PrTi2_2Al20_{20} is a quadrupolar Kondo lattice system that exhibits quadrupolar ordering due to the non-Kramers Γ3\Gamma_3 ground doublet and has strong hybridization between 4f4f and conduction electrons. Our study using high-purity single crystal reveals that PrTi2_2Al20_{20} exhibits type-II superconductivity at Tc=200T_{\rm c} = 200 mK in the nonmagnetic ferroquadrupolar state. The superconducting critical temperature and field phase diagram suggests moderately enhanced effective mass of m/m016m^*/m_0 \sim 16

    First Results from KamLAND: Evidence for Reactor Anti-Neutrino Disappearance

    Get PDF
    KamLAND has been used to measure the flux of νˉe\bar{\nu}_e's from distant nuclear reactors. In an exposure of 162 ton\cdotyr (145.1 days) the ratio of the number of observed inverse β\beta-decay events to the expected number of events without disappearance is 0.611±0.085(stat)±0.041(syst)0.611\pm 0.085 {\rm (stat)} \pm 0.041 {\rm (syst)} for νˉe\bar{\nu}_e energies >> 3.4 MeV. The deficit of events is inconsistent with the expected rate for standard νˉe\bar{\nu}_e propagation at the 99.95% confidence level. In the context of two-flavor neutrino oscillations with CPT invariance, these results exclude all oscillation solutions but the `Large Mixing Angle' solution to the solar neutrino problem using reactor νˉe\bar{\nu}_e sources.Comment: 6 pages, 6 figure

    Search for the Invisible Decay of Neutrons with KamLAND

    Get PDF
    The Kamioka Liquid scintillator Anti-Neutrino Detector (KamLAND) is used in a search for single neutron or two neutron intra-nuclear disappearance that would produce holes in the s\it{s}-shell energy level of 12^{12}C nuclei. Such holes could be created as a result of nucleon decay into invisible modes (invinv), e.g. n3νn \to 3\nu or nn2νnn \to 2\nu. The de-excitation of the corresponding daughter nucleus results in a sequence of space and time correlated events observable in the liquid scintillator detector. We report on new limits for one- and two-neutron disappearance: τ(ninv)>5.8×1029\tau(n\to inv)> 5.8\times 10^{29} years and τ(nninv)>1.4×1030\tau (nn \to inv)> 1.4 \times 10^{30} years at 90% CL. These results represent an improvement of factors of \sim3 and >104>10^4 over previous experiments.Comment: 5 pages, 3 figure

    Measurement of Neutrino Oscillation with KamLAND: Evidence of Spectral Distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton-year exposure of KamLAND to reactor anti-neutrinos. We observe 258 \nuebar\ candidate events with energies above 3.4 MeV compared to 365.2 events expected in the absence of neutrino oscillation. Accounting for 17.8 expected background events, the statistical significance for reactor \nuebar disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from \nuebar oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2. A global analysis of data from KamLAND and solar neutrino experiments yields \DeltaMSq = 7.90.5+0.6×105^{+0.6}_{-0.5}\times10^{-5} eV2^2 and \ThetaParam = 0.400.07+0.10^{+0.10}_{-0.07}, the most precise determination to date.Comment: 5 pages, 4 figures; submitted to Phys.Rev.Letter
    corecore