783 research outputs found

    Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe₂

    Get PDF
    光を着た電子状態の飛び移りを世界で初めて観測に成功 --赤外光パルスによる電子状態制御へ--. 京都大学プレスリリース. 2022-12-28.Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we observed the coherent exciton emission in monolayer WSe₂ at room temperature at the appropriate photon energy and the field strength of the driving light pulse using high-harmonic spectroscopy. Together with numerical calculations, our measurements revealed that the coherent exciton emission spectrum reflects the diabatic and adiabatic dynamics of Floquet states of excitons. Our results provide a previosuly unexplored approach to Floquet engineering and lead to control of quantum materials through pulse shaping of the driving field

    Bell's inequality violation with spins in silicon

    Full text link
    Bell's theorem sets a boundary between the classical and quantum realms, by providing a strict proof of the existence of entangled quantum states with no classical counterpart. An experimental violation of Bell's inequality demands simultaneously high fidelities in the preparation, manipulation and measurement of multipartite quantum entangled states. For this reason the Bell signal has been tagged as a single-number benchmark for the performance of quantum computing devices. Here we demonstrate deterministic, on-demand generation of two-qubit entangled states of the electron and the nuclear spin of a single phosphorus atom embedded in a silicon nanoelectronic device. By sequentially reading the electron and the nucleus, we show that these entangled states violate the Bell/CHSH inequality with a Bell signal of 2.50(10). An even higher value of 2.70(9) is obtained by mapping the parity of the two-qubit state onto the nuclear spin, which allows for high-fidelity quantum non-demolition measurement (QND) of the parity. Furthermore, we complement the Bell inequality entanglement witness with full two-qubit state tomography exploiting QND measurement, which reveals that our prepared states match the target maximally entangled Bell states with >>96\% fidelity. These experiments demonstrate complete control of the two-qubit Hilbert space of a phosphorus atom, and show that this system is able to maintain its simultaneously high initialization, manipulation and measurement fidelities past the single-qubit regime.Comment: 10 pages, 3 figures, 1 table, 4 extended data figure

    Searches for New Milky Way Satellites from the First Two Years of Data of the Subaru/Hyper Suprime-Cam Survey: Discovery of Cetus~III

    Full text link
    We present the results from a search for new Milky Way (MW) satellites from the first two years of data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) 300\sim 300~deg2^2 and report the discovery of a highly compelling ultra-faint dwarf galaxy candidate in Cetus. This is the second ultra-faint dwarf we have discovered after Virgo~I reported in our previous paper. This satellite, Cetus~III, has been identified as a statistically significant (10.7σ\sigma) spatial overdensity of star-like objects, which are selected from a relevant isochrone filter designed for a metal-poor and old stellar population. This stellar system is located at a heliocentric distance of 25111+24^{+24}_{-11}~kpc with a most likely absolute magnitude of MV=2.4±0.6M_V = -2.4 \pm 0.6~mag estimated from a Monte Carlo analysis. Cetus~III is extended with a half-light radius of rh=9017+42r_h = 90^{+42}_{-17}~pc, suggesting that this is a faint dwarf satellite in the MW located beyond the detection limit of the Sloan Digital Sky Survey. Further spectroscopic studies are needed to assess the nature of this stellar system. We also revisit and update the parameters for Virgo~I finding MV=0.330.87+0.75M_V = -0.33^{+0.75}_{-0.87}~mag and rh=4713+19r_h = 47^{+19}_{-13}~pc. Using simulations of Λ\Lambda-dominated cold dark matter models, we predict that we should find one or two new MW satellites from 300\sim 300~deg2^2 HSC-SSP data, in rough agreement with the discovery rate so far. The further survey and completion of HSC-SSP over 1,400\sim 1,400~deg2^2 will provide robust insights into the missing satellites problem.Comment: 12 pages, 12 figures, accepted for publication in PASJ special issu

    Sparse Exploratory Factor Analysis

    Get PDF
    Sparse principal component analysis is a very active research area in the last decade. It produces component loadings with many zero entries which facilitates their interpretation and helps avoid redundant variables. The classic factor analysis is another popular dimension reduction technique which shares similar interpretation problems and could greatly benefit from sparse solutions. Unfortunately, there are very few works considering sparse versions of the classic factor analysis. Our goal is to contribute further in this direction. We revisit the most popular procedures for exploratory factor analysis, maximum likelihood and least squares. Sparse factor loadings are obtained for them by, first, adopting a special reparameterization and, second, by introducing additional [Formula: see text]-norm penalties into the standard factor analysis problems. As a result, we propose sparse versions of the major factor analysis procedures. We illustrate the developed algorithms on well-known psychometric problems. Our sparse solutions are critically compared to ones obtained by other existing methods

    Electrically controlling single spin qubits in a continuous microwave field

    Get PDF
    Large-scale quantum computers must be built upon quantum bits that are both highly coherent and locally controllable. We demonstrate the quantum control of the electron and the nuclear spin of a single 31P atom in silicon, using a continuous microwave magnetic field together with nanoscale electrostatic gates. The qubits are tuned into resonance with the microwave field by a local change in electric field, which induces a Stark shift of the qubit energies. This method, known as A-gate control, preserves the excellent coherence times and gate fidelities of isolated spins, and can be extended to arbitrarily many qubits without requiring multiple microwave sources.Comment: Main paper: 13 pages, 4 figures. Supplementary information: 25 pages, 13 figure

    Hybrid Session Verification through Endpoint API Generation

    Get PDF
    © Springer-Verlag Berlin Heidelberg 2016.This paper proposes a new hybrid session verification methodology for applying session types directly to mainstream languages, based on generating protocol-specific endpoint APIs from multiparty session types. The API generation promotes static type checking of the behavioural aspect of the source protocol by mapping the state space of an endpoint in the protocol to a family of channel types in the target language. This is supplemented by very light run-time checks in the generated API that enforce a linear usage discipline on instances of the channel types. The resulting hybrid verification guarantees the absence of protocol violation errors during the execution of the session. We implement our methodology for Java as an extension to the Scribble framework, and use it to specify and implement compliant clients and servers for real-world protocols such as HTTP and SMTP
    corecore