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Abstract

Sparse principal component analysis is a very active research area
in the last decade. It produces component loadings with many zero
entries which facilitates their interpretation and helps avoid redundant
variables. The classic factor analysis is another popular dimension re-
duction technique which shares similar interpretation problems and
could greatly benefit from sparse solutions. Unfortunately, there are
very few works considering sparse versions of the classic factor analy-
sis. Our goal is to contribute further in this direction.

We revisit the most popular procedures for exploratory factor anal-
ysis, maximum likelihood and least squares. Sparse factor loadings are
obtained for them by, first, adopting a special re-parameterization and,
second, by introducing additional `1-norm penalties into the standard
factor analysis problems. As a result we propose sparse versions of
the major factor analysis procedures. We illustrate the developed al-
gorithms on well known psychometric problems. Our sparse solutions
are critically compared to ones obtained by other existing methods.

Key words: eigenvalue re-parameterization, penalties inducing sparseness,
optimization on matrix manifolds.
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1 Introduction

Sparse principal component analysis (PCA) is a very active research area in the
last decade. The origins of this new concept are considered in (Jolliffe, 2002). The
usual practice to interpret either component or factor loadings is to ignore the
ones with small magnitude, or set to zero loadings smaller than certain threshold
value. This makes the loadings matrix sparse artificially and subjectively. The
initial idea behind the sparse PCA was to eliminate this subjective thresholding
of the component loadings and facilitate their interpretation, especially when the
number of the original variables is large. It was additionally realized that sparse
PCA helps avoiding redundant variables.

A great number of papers appeared (and still continue to appear) to solve this
difficult but very important for the modern applications problem (Trendafilov,
2014). Exploratory factor analysis (EFA) is another popular dimension reduc-
tion technique (Mulaik, 2010). However, there exist very few works dealing with
the modernization of the classic EFA parameter estimation in order to produce
sparse factor loadings, e.g. Choi et al. (2011); Hirose and Yamamoto (2015); Ning
and Georgiou (2011). The recently proposed alternative to the classic rotation
approach by Trendafilov and Adachi (2015) is primarily designed for interpreting
component loadings.

A vector or a matrix is called sparse when the number of the non-zero entries,
called cardinality, is much smaller than the number of all elements. Clearly, this
definition is not precise and leaves room for discussion for the level of spareness.
Compared to the classic Thurstone’s concept for simple structure, the sparseness
concept does not make any requirements for the pattern of the zero entries. Some
comparative discussion of these two concepts is available in (Trendafilov, 2014).

Currently, there are two ways to impose sparseness: by penalties, or by ex-
plicit requirement for the cardinality of the solution. The LASSO (Least Absolute
Shrinkage and Selection Operator) is the most popular sparseness inducing penalty.
For a vector x of fixed length, say ‖x‖2 = 1, LASSO penalizes the sum of the ab-
solute values of its elements, i.e. ‖x‖1 < τ . The reduction of τ produces more
and more zero entries in x. In the available sparse techniques, adopting penalties,
the level of sparseness is controlled by such tuning parameter(s). However, the
sparser solutions give worsen fit to the data. Thus, the big problem of any sparse
technique is to compromise between sparseness and goodness-of-fit.

In this work, we modify the classic EFA by introducing sparse-inducing con-
straints on the factor loadings. The main goal is to obtain easily interpretable
factor loadings which are sparse in an optimal way. Some preliminary results were
announced in (Fontanella et al., 2014).

The EFA model is considerably more complicated than PCA. Particularly,
obtaining sparse factor loadings is considerably more complicated by the presence
of other parameters affecting the overall fit of the EFA model. For example, the
nice feature of the sparse PCA that sparse component loadings can be obtained
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column by column by deflation is not available for EFA. Also, penalizing the
`1 matrix norm of the factor loadings can lead to solutions with large unique
variances. Thus, imposing sparseness inducing constraints on the factor loadings
in EFA is less straightforward than with the component loadings in PCA.

The currently existing works on sparse EFA (Choi et al., 2011; Hirose and
Yamamoto, 2015; Ning and Georgiou, 2011) use penalties to obtain sparse factor
loadings. Choi et al. (2011) and Hirose and Yamamoto (2015) enhance the classic
EM algorithm with penalties, while Ning and Georgiou (2011) solve the classic
maximum likelihood (ML) EFA with additional LASSO-type penalty.

We also adopt LASSO-like penalties to achieve sparse factor loadings. They
can be readily incorporated in the EFA reparameterization proposed by Trendafilov
(2003) for arbitrary EFA formulation(ML or other). This reparameterization con-
siders the matrix of factor loadings Λ as a product of an ortonormal matrix Q,
and a diagonal matrix D. Then, Q is sparsified with LASSO-type penalties, and
the sparseness is preserved after multiplication by D. Thus, Q takes care for the
pattern of sparseness of Λ, i.e. the locations of the zero loadings, while D adjusts
the magnitudes of Λ for better fit.

The paper is organized as follows. Section 2 briefly revisits the EFA model
and the assumptions imposed on its parameters, as well as the EFA reformula-
tion as a parameter estimation (optimization) problem under several most popu-
lar goodness-of-fit measures (cost functions). New parameterization of the EFA
models is considered in Section 3, which is then utilized to define the correspond-
ing sparse EFA problems in Section 4. The sparse EFA problems are solved as
optimization problems on matrix manifolds. The performance of the proposed
algorithms is demonstrated on several artificial and real well-know data sets in
Section 5. The Appendix contains the derivation of the gradient of the sparse
inducing penalty based on the `1-norm.

2 The classic EFA model and its estimation

EFA is a model-based multivariate technique that aims to explain the relation-
ships among p manifest random variables by r (� p) latent random variables
called common factors F . The EFA model assumes that some portion of the vari-
ation of each observed variable remains unaccounted for by the common factors.
Thus, p additional latent variables called unique factors U are introduced, each of
which accounts for this portion of variance of the corresponding manifest variable
(Mulaik, 2010). In formal terms, the EFA model represents/approximates a given
n× p data matrix Z of p observed (standardized) variables on n observations as a
linear combination of r common and p unique factors F and U

Z ≈ FΛ> + UΨ, (1)

where Λ and Ψ are parameter matrices with sizes p × r and p × p respectively.
Λ contains the factor loadings, and Ψ is diagonal and contains the standard de-
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viations for the unique factors U . The choice of r is either subjective or based
on preliminary validation. In both cases its value is subject to some limitations
(Mulaik, 2010). The r-factor model (1) assumes that all involved random vari-
ables (Z,F and U) have zero means and unit variances, and that both common
and unique factors are uncorrelated. Most importantly, F and U are also assumed
mutually uncorrelated, and all diagonal entries of Ψ are assumed non-zero. Fol-
lowing the r-model defined above and the assumptions made, it can be found that
the sample correlation matrix R is presented/approximated by EFA as:

R ≈ RZZ = ΛΛT + Ψ2 . (2)

Thus, the main problem of EFA is to find the pair {Λ,Ψ} which gives the
best fit in some sense to the sample correlation matrix R (for certain r). If the
data are assumed normally distributed the maximum likelihood principle can be
applied (Mulaik, 2010). Then, finding {Λ,Ψ} can be formulated as minimizing the
following negative loglikelihood function (Jöreskog, 1977; Mulaik, 2010):

minΛ,Ψ log(det(ΛΛT + Ψ2)) + trace((ΛΛT + Ψ2)−1R) , (3)

which for short is called ML-EFA.
If nothing is assumed about the distribution of the data, the loglikelihood

function (3) can still be used as a measure of the discrepancy between the model
and the sample correlation matrices, RZZ and R. There are a number of other
discrepancy measures (Jöreskog, 1977) which are used in place of (3). A natural
choice is the least squares approach for fitting the factor analysis model (2), which
can be formulated as the following general class of weighted least squares problems:

min
Λ,Ψ
‖(R− ΛΛT −Ψ2)V ‖2 , (4)

where V is a matrix of weights, and ‖‖ denotes the Frobenius matrix norm ‖A‖2 =
traceATA. The case of V = Ip, an identity p × p matrix, is known as the least
squares factor analysis, LS-EFA. The second special case V = R−1, is known as
the generalized least squares problem, GLS-EFA.

The solutions of the minimization problems ML, LS and GLS are not unique.
To eliminate the rotational indeterminacy, the unknowns Λ and Ψ are sought
subject to the following constraints (Jöreskog, 1977): for ML and GLS,

ΛTΨ−2Λ to be diagonal , (5)

and for LS,

ΛTΛ to be diagonal . (6)

The constraint (5) explains why Ψ is required by EFA to have non-zero diagonal
entries. This assumption is equivalent to the assertion that no observable random
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variable can ever be explained entirely by a common factor. This assumption
and several other features, e.g. factor scores indeterminacy (Mulaik, 2010), make
the EFA model highly controversial, which probably explains why EFA is far less
popular dimension reduction technique than PCA.

For any orthogonal r × r matrix P we have:

RZZ = ΛΛT + Ψ2 = ΛPP TΛT + Ψ2 = ΛP (ΛP )T + Ψ2 , (7)

which is known as the rotation indeterminacy in EFA. Indeed, the constraint (5)
eliminates the indeterminacy (7), however such solutions are usually difficult for
interpretation. Instead, the common practice is to make use of (7): rotate the ini-
tially found factor loadings Λ by some kind of “simple structure” rotation (Mulaik,
2010) to make them more interpretable. By “interpretable” it is meant that each
factor has only few large loadings. The rule is to ignore, effectively make zero, the
remaining rather small ones. In fact, the factor loadings interpretation relies on
artificially constructed sparse loadings Λ, many of which are neglected, and thus
considered zeros.

We propose to modify the EFA fitting problems (3) and (4) by introducing
sparse-inducing constraints. Then, the resulting factor loadings Λ will be sparse
in an optimal way. This strategy is not new. The same interpretation problem
occurs in PCA. Its solution led in the last decade to developing a great number of
new procedures directly producing sparse component loadings, which considerably
simplifies their interpretation. In contrast, there are very few works on sparse
EFA, e.g. (Choi et al., 2011; Hirose and Yamamoto, 2015; Ning and Georgiou,
2011). The proposed work makes a further contribution to this new research area.

3 PCA-like reparameterization of EFA

It has been argued in Trendafilov (2003), that, in fact, the constraints (5) and (6)
facilitate the algorithms for numerical solution of the different EFA definitions (3)
and (4), see for details e.g. (Jöreskog, 1977; Mulaik, 2010). As we mentioned,
occasionally (5) and (6) may facilitate the interpretation of Λ, but in general this
is not the case. The alternative traditional approach to rotate the initial factor
loadings Λ to “simple structure” gives, in turn, rotated factor loading violating (5)
and (6).

In this work we adopt the new formulation of the EFA estimation problems
(3) and (4) proposed in (Trendafilov, 2003). The constraints (5) and (6) will
not be needed any more. The only natural constraints inferred from the r-factor
analysis model (2) are that the p× r matrix Λ should have full column rank, and
that the p × p diagonal matrix Ψ2 should be positive definite. Additionally, we
relax the second condition and assume positive semi -definite diagonal Ψ2. There
are two reasons for this. From EFA model point of view this constraint seems too
restrictive. From numerical point of view the algorithms developed in (Trendafilov,
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2003) do not relay on Ψ2 > 0. Moreover, maintaining Ψ2 > 0 may contradict
achieving high level of sparseness (Section 5 and Section 6).

Consider the eigenvalue decomposition of the positive semi definite ΛΛT of
rank at most r in (2), i.e. let ΛΛT = QD2QT , where D2 is an r × r diagonal
matrix composed by the largest (nonnegative) r eigenvalues of ΛΛT arranged in
descending order and Q is a p×r orthonormal matrix containing the corresponding
eigenvectors. Note that for this reparameterization ΛTΛ is diagonal, i.e. the
condition (6) is fulfilled automatically. Then (2) can be rewritten as:

RZZ = QD2QT + Ψ2 . (8)

It may look that the reformulated EFA model (8) is more restrictive. In fact,
it is more general. To see this, one can write (8) in more abstract terms as

RZZ = S + Ψ2 ,

where S denotes a semidefinite symmetric matrix of low rank r. The classic EFA
considers two separate cases with either uncorrelated (orthogonal) factors and
S = ΛΛT , or with correlated factors and S = ΛΦΛT , where Φ is the correlation
matrix collecting the correlations among the factors. No matter which of these
two forms is used for S, it can be rewritten as S = QD2QT making use of the
truncated eigenvalue decomposition of S. In other words, (8) absorbs both cases
of either uncorrelated or correlated factors, and thus, it is more general that the
original EFA formulation.

Thus, instead of the pair {Λ,Ψ}, a triple {Q,D,Ψ} is sought in (Trendafilov,
2003). Thus, the new factor loadings Λ are given by QD. Clearly, when Q is
sparse, Λ will have the same sparseness. Note, that the model (8) with sparse
Q (and Λ) does not permit rotations, only permutations are possible. In order
to maintain the factor analysis constraints, the triple {Q,D,Ψ} should be sought
such that Q be a p× r orthonormal matrix, and D and Ψ – diagonal. Note, that
we do not insist for non-singular Ψ, however the singularity of D implies failing of
the r-factor analysis model.

The new formulation of the factor analysis estimation problems is straightfor-
ward. Indeed, for a given sample correlation matrixR, the ML-EFA is reformulated
as follows:

min
Q,D,Ψ

log(det(QD2QT + Ψ2)) + trace((QD2QT + Ψ2)−1R) , (9)

and the LS- and the GLS-EFA estimation problems are rewritten as:

min
Q,D,Ψ

‖(R−QD2QT −Ψ2)V ‖2 . (10)

4 Sparse factor loadings with penalized EFA

In the new EFA formulation (8), the factor loadings Λ are parameterized as QD.
This implies that Λ and Q have the same patterns of zero entries, i.e. they are

6



equally sparse. To see this, consider parameterization of the following hypothetical
5× 2 sparse factor loadings matrix Λ:

Λ =


λ11 0
0 λ22

λ31 0
λ41 0
0 λ52

 = QD =


q11 0
0 q22

q31 0
q41 0
0 q52


(
d1 0
0 d2

)
=


q11d1 0

0 q22d2

q31d1 0
q41d1 0

0 q52d2

 ,

which demonstrates that Q is solely responsible for the locations of the zeros in Λ,
and D adjusts the magnitudes of the nonzero loadings.

Thus, to achieve sparse factor loadings Λ, one simply needs sparse orthonormal
Q, which is a problem resembling the well-known sparse PCA, e.g. (Trendafilov
and Jolliffe, 2006).

Let qi denote the ith column ofQ, i.e. Q = (q1,q2, ...,qr), and τ = (τ1, τ2, ..., τr)
be a vector of tuning parameters, one for each column of Q. We consider a pe-
nalized version of EFA, where the `1 norm of each of the columns of Q is pe-
nalized, i.e. ‖qi‖1 ≤ τi for all i = 1, 2, ..., r. Introduce the following discrep-
ancy vector qτ = (‖q1‖1, ‖q2‖1, ..., ‖qr‖1) − τ , which can also be expressed as
qτ = 1>p [Q � sign(Q)] − τ , where sign(Q) is a matrix containing the signs of the
elements of Q, and 1p is a vector with p unit elements. We adapt the scalar penalty
function max{x, 0} used by Trendafilov and Jolliffe (2006) to introduce the follow-
ing vector penalty function Pτ (Q) = [qτ � (1r + sign(qτ )]/2. Then, the penalized
versions of (9) and (10) can be defined, for the ML-EFA as:

min
Q,D,Ψ

log(det(RZZ)) + trace((RZZ)−1R) + µPτ (Q)>Pτ (Q) , (11)

and for the LS- and the GLS-EFA as:

min
Q,D,Ψ

‖(R−RZZ)V ‖2 + µPτ (Q)>Pτ (Q) . (12)

Note, that Pτ (Q)>Pτ (Q) penalizes the sum of squares of ‖qi‖1 − τi for all
i = 1, 2, ..., r, i.e. precise fit of ‖qi‖1 to each tuning parameter τi cannot be
achieved.

5 Numerical examples

In this Section we first explore the behavior of the proposed sparse EFA on sim-
ulated data considered by Choi et al. (2011). Then, in contrast to Choi et al.
(2011); Hirose and Yamamoto (2015); Ning and Georgiou (2011), we consider two
examples from the classic EFA. Our goal is to demonstrate that the results from
the new procedure agree well with the results from the old EFA solutions, but are
easier and clearer for interpretation.
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5.1 Simulated data (Choi et al., 2011)

We examine the performance of the proposed approach by employing the simulated
data constructed by Choi et al. (2011). They take a hypothetical 12 × 4 sparse
loadings matrix Λ with the following non-zero entries: λ11 = λ21 = λ31 = 1.8, λ42 =
λ52 = λ62 = 1.7, λ73 = λ83 = λ93 = 1.6 and λ10,4 = λ11,4 = λ12,4 = 1.5, and
Ψ2 = Diag(1.27, .61, .74, .88, .65, .81, .74, 1.3, 1.35, .74, .92, 1.32). Thus, the
”population” sparse loadings matrix has 36 zeros. The ”population” covariance
matrix is created by (2), and then we normalize it to obtain a correlation matrix
used to generate normally distributed zero mean independent samples.

We generate 100 data matrices each of which is analyzed by sparse ML-EFA.
For this reason we solve (11) for six decreasing values τ0(=

√
12, 3.0534, 2.6427,

2.2321, 1.8214, 1.4107), where each value of τ0 is applied to all columns, i.e. τ =
τ01r. In such situations, we use τ for both scalar or vector, depending on the
context. The solution for any particular τ is used as a starting value for the next
run with the consecutive τ . The starting values for the first τ(=

√
12 = 3.4641)

are chosen randomly.
The goal of this simulation experiment is to demonstrate that, in general,

the sparsity level of the factor loadings increases when τ decreases. In order to
show also how the number of zero loadings increases within the 100 runs, we
provide a more complicated graphical display in Figure 1. For τ =

√
12, nearly

all factor loadings matrices are dense, only 4 of them contain a single zero entry.
For τ = 2.6427, there are 22 factor loadings matrices with no zero entry, 49 –
with a single zero entry, 22 – with two zero entries, and the rest seven have three
zero loadings. For τ = 1.4107, there are 93 factor loadings matrices with 36 zero
entries, 6 – with a 35 zeros, and only one – with 34 zero entries. In other words,
with τ = 1.4107 the sparse ML-EFA achieves 93% exact recovery of the underlying
sparseness. The case τ = 1 is not depicted, as it produces excessive sparseness.
Clearly, the correct tuning parameter for this problem is around τ = 1.4107. After
the correct sparseness is localized, one can perform further runs to achieve the
best corresponding fit.

5.2 Harman’s Five Socio-Economic Variables (Harman,
1976, p.14)

First, we illustrate the proposed procedures for sparse EFA on a well known data
set from classic EFA, namely the Harman’s Five Socio-Economic Variables (Har-
man, 1976, p.14). This small data set is interesting because the two- and the
three-factor solutions from LS- and ML-EFA are ‘Heywood cases’ (Harman, 1976;
Mulaik, 2010), i.e. Ψ2 contains zero diagonal entries, or Ψ2 ≥ 0. One-factor solu-
tion is not considered interesting as it explains only 57.47% of the total variance.

Table 1 contains several sparse LS-EFA solutions of (12) starting with τ =√
5 = 2.2361, which is equivalent to the standard (non sparse) LS-EFA solution.
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Figure 1: Number of zeros obtained in 100 runs of sparse ML-EFA (11) for
different τ . For each plot, the x axis denotes the number of zero entries in a
single matrix of factor loadings, e.g none, or one, or 36. The y axis denotes
the number of matrices with the corresponding (on x) number of zero entries.

For all of them we have Ψ2 ≥ 0. Clearly, POP, EMPLOY and HOUSE tend to
be explained by the common factors only, which is already suggested by the non
sparse solution (τ =

√
5). Increasing the sparseness of the factor loadings results

in variables entirely explained by either a common or unique factor. The presence
of loadings with magnitudes over 1 demonstrates the well known weakness of LS-
EFA in fitting the unit diagonal of a correlation matrix. It is well known that
ML-EFA does not exhibit this problem which is illustrated by the next example.

VARS τ =
√

5 τ = 1.824 τ = 1.412 τ = 1
QD Ψ2 QD Ψ2 QD Ψ2 QD Ψ2

POP -.62 -.78 .00 .07 1.0 .00 -.00 1.0 .00 .00 -.99 .00
SCHOOL -.70 .52 .23 .94 -.20 .07 .85 -.00 .27 -.28 -.00 .92
EMPLOY -.70 -.68 .04 .19 .87 .21 -.00 1.0 .00 -.00 -.99 .00
SERVICES -.88 .15 .20 .78 .23 .34 .58 .13 .65 -.18 -.00 .97
HOUSE -.78 .60 .03 1.0 -.22 .00 1.1 -.07 .00 -1.2 .00 .00

Table 1: LS-EFA solutions for Five Socio-Economic Variables, (Harman,
1976, p.14).

5.3 Holzinger-Harman’s Twenty-Four Psychological Tests
(Harman, 1976, p.123)

Next, we illustrate the proposed procedures for sparse EFA on another well known
data set from classic EFA, namely the Holzinger-Harman’ Twenty-Four Psycho-
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logical Tests (Harman, 1976, p.123). It is widely used to illustrate different aspects
of classic EFA (Harman, 1976; Mulaik, 2010).

The correlation matrix (Harman, 1976, p.124) of these data is non-singular
and we apply ML-EFA (11). The first five columns of Table 2 contain the solution
(factor loadings QD and unique variances Ψ2) of (11) with τ =

√
24 = 4.899, i.e.

the standard ML-EFA solution, which is nearly identical to the ML solution ob-
tained in (Harman, 1976, p.215). Then, we rotate (with normalization) the factor
loadings QD from the first four columns by VARIMAX from MATLAB (MATLAB,
2014), and the result is given in the next four columns of Table 2.

τ =
√

24 = 4.899 Varimax rotated τ = 2.2867 τ = 2.1697

QD Ψ2 QD and T.41 QD Ψ2 QD Ψ2

1 .60 .39 -.22 .02 .44 .69 .16 .19 .16 -.88 .31 -.83 .41
2 .37 .25 -.13 -.03 .78 .44 .12 .08 .10 -.25 .86 1.0
3 .41 .39 -.14 -.12 .64 .57 .14 -.02 .11 -.53 .70 -.39 .76
4 .49 .25 -.19 -.10 .65 .53 .23 .10 .08 -.55 .69 -.55 .67
5 .69 -.28 -.03 -.30 .35 .19 .74 .21 .15 .82 .35 .81 .36
6 .69 -.20 .08 -.41 .31 .20 .77 .07 .23 .84 .32 .84 .32
7 .68 -.29 -.08 -.41 .28 .20 .81 .15 .07 .86 .29 .86 .29
8 .67 -.10 -.12 -.19 .49 .34 .57 .24 .13 .64 .54 .63 .54
9 .70 -.21 .08 -.45 .26 .20 .81 .04 .23 .87 .27 .86 .28
10 .48 -.49 -.09 .54 .24 .12 .17 .83 .17 .17 .91 .29 .07 .89 .33
11 .56 -.14 .09 .33 .55 .12 .18 .51 .37 .63 .59 .61 .59
12 .47 -.14 -.26 .51 .44 .21 .02 .72 .09 .72 .50 .75 .48
13 .60 .03 -.30 .24 .49 .44 .19 .53 .08 -.29 .47 .51 -.13 .47 .58
14 .42 .02 .41 .06 .65 .05 .20 .08 .55 .46 .75 .37 .79
15 .39 .10 .36 .09 .70 .12 .12 .07 .52 .53 .71 .49 .73
16 .51 .35 .25 .09 .55 .41 .07 .06 .53 .56 .68 .50 .72
17 .47 -.00 .38 .20 .60 .06 .14 .22 .57 .72 .54 .77 .50
18 .52 .15 .15 .31 .59 .29 .03 .34 .46 .65 .61 .68 .59
19 .44 .11 .15 .09 .76 .24 .15 .16 .37 .33 .82 .18 .89
20 .61 .12 .04 -.12 .59 .40 .38 .12 .30 .33 .77 .31 .78
21 .59 .06 -.12 .23 .58 .38 .17 .44 .22 -.02 .50 .68 .37 .75
22 .61 .13 .04 -.11 .60 .40 .37 .12 .30 .28 .80 -.60 .64
23 .69 .14 -.10 -.04 .50 .50 .37 .24 .24 -.59 .02 .64 -.70 .55
24 .65 -.21 .02 .18 .50 .16 .37 .50 .30 .63 .59 .61 .60
(3) 14.28 16.71 17.08

Table 2: ML-EFA solutions for Twenty-Four Psychological Tests (Harman,
1976, p.123) with their values for the ML objective function (3).

The classic EFA approach to interpret the rotated loadings QD is to set up
a threshold which cuts off the loadings with lesser magnitudes. It is helpful to
sort the loadings magnitudes and look for jumps indicating for possible cut-off
values. The left hand side panel of Figure 2 gives a plot of the sorted rotated ML
loadings. Clearly, the largest jump in the loadings magnitudes is at .58. If this
is taken as a cut-off value only 7 non-zero loadings will be left for interpretation
(out of 96), which may seem too extreme simplification. The next largest jump
is at .25, which would leave 38 loadings for interpretation. This is nearly 40% of
all loadings and may seem too many. The next largest jumps are at .46 and .31,
which would leave for interpretation 18 and 34 loadings respectively. Interpreting
34 loadings still looks difficult, so one can drop .31 as a cut-off point. The other cut-
off point .46 looks attractive with only 18 points for interpretation (which is nearly
20% of all loadings), but one may feel unconformable with such a high threshold.
Then, consider the next ones being either .34 or .41, leaving respectively 32 and
22 for interpretation. As 32 loadings still look too many for interpretation, for
this example we choose to work with .41 as a cut-off point and the corresponding
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Figure 2: Number of zeros obtained in 100 runs of sparse ML-EFA (11) for
different τ .

loadings are given in bold in Table 2. The hypothetical matrix of thresholded
loadings (with bold loadings and zeros elsewhere) is denoted by T.41.

It is clear that this lengthy way of choosing the interpretation threshold is com-
pletely subjective and lacks any optimality. For large loadings matrices such an
approach would be simply impossible to apply. The sparse EFA provides a reason-
able alternative by directly producing sparse matrix of factor loadings. However,
the sparse solutions produce worse fit than the classic ones. In general, the increase
of the loadings sparseness worsens the fit. Thus, one needs to find a compromise
between fit and sparseness, i.e. to optimize the value of the tuning parameter τ in
(11). In sparse PCA, tuning parameters as τ are usually found by cross-validation
for large applications, or by employing information criteria (Trendafilov, 2014).
For small applications, as those considered in the paper, the optimal tuning pa-
rameter τ can be easily located by solving the problem for several values of τ and
compromising between sparseness and fit. Another option is to solve (11) for a
range of values of τ and choose the most appropriate of them based on some index
of sparseness. Here we use the following one:

IS(τ) =
original fit

fit for τ
×
(

#0

pr

)2

, (13)

where #0 is the number of zeros among all pr loadings of Λ = QD. IS increases
with the sparseness and when the fit of the sparse solution of (11) is close to the
original one, i.e. with µ = 0.

We solve (11) for 100 values of τ from τ =
√

24 = 4.899 to 1. The values of the
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index of sparseness (13) are depicted in the right hand side panel of Figure 2. The
maximum of IS is for τ = 2.1697 and is IS(2.1697) = 0.4409. The corresponding
sparse factor loadings QD and unique variances Ψ2 are depicted in the last five
columns of Table 2. This matrix of factor loadings has 25 non-zero loadings (26%).
The ML fit is 17.08. It turns out, that it is closer to the hypothetical T.46 in least-
squares sense than to T.41. The sparse matrix obtained with τ = 2.2867 (the
second largest IS(2.2867) = 0.4032) is also depicted in Table 2. It may look more
like T.41, but in fact, it is also closer to T.46 in least-squares sense than to T.41.
Thus, the adopted index of sparseness (13) implies that the choice of the cut-off
point .41 is incorrect, and should have been set to .46.

6 Comparison to other methods

In this section we compare the performance of the proposed procedure SEFA for
sparse EFA with three other approaches by Choi et al. (2011); Hirose and Ya-
mamoto (2015) and Ning and Georgiou (2011) developed with the same purpose.
However, it turns out that the available software GEM for the method by Choi
et al. (2011) does not work properly. The code realizing the method by Ning and
Georgiou (2011) is lost, according to the authors’ response.

Thus, our procedure will be compared with the method proposed by Hirose
and Yamamoto (2015). Their codes in R are available online as the package fanc,
which also will be used for short reference to their work. We will demonstrate how
fanc finds sparse factor solutions for the Five Socio-Economic Variables, (Harman,
1976, p.14), and for the Twenty-Four Psychological Tests (Harman, 1976, p.123).
The results will be compared with the performance of SEFA.

The solution with ρ = .001 (and less) is identical with the non-constrained so-
lution (ρ = 0) depicted in Table 7. We find several (fanc) solutions with increasing
values of ρ. They are reproduced in Table 3:

VARS ρ = .005 ρ = .01 ρ = .05 ρ = .1
Λ = QD Ψ2 Λ Ψ2 QD Ψ2 QD Ψ2

POP .991 .001 .005 .983 .005 .938 .005 .916 -.002 .005
SCHOOL .891 .193 .882 .194 .828 .195 .802 .196
EMPLOY .966 .117 .036 .959 .114 .036 .913 .107 .036 .890 .101 .036
SERVICES .424 .783 .185 .418 .774 .185 .388 .727 .186 .374 .706 .186
HOUSE .006 .955 .074 .004 .947 .074 .895 .073 .870 .073
Value of (3) -1.072 -1.071 -1.052 -1.032

Table 3: Four fanc solutions with LASSO penalty (γ = ∞) for Five Socio-
Economic Variables, (Harman, 1976, p.14).

By looking at Table 3, one can conclude that the solution with ρ = .05 is
the best: it has three exact zero loadings, and its fit is better than the next one
with ρ = .1, which has two zero loadings. Hirose and Yamamoto (2015) provide
a number of ways to evaluate the quality of their solutions. Some of them are
provided in Table 4 for completeness.
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ρ0 ρ Goodness-of-fit Criteria
GFI AGFI SRMR AIC BIC CAIC EBIC

.001 .0010784 .7039321 −∞ .0123146 17.13224 24.40584 39.40584 70.45754

.005 .0052776 .7056696 -3.4149556 .0197663 15.13684 21.92553 35.92553 63.37206

.01 .0116752 .7070369 -1.1972236 .0301804 13.14765 19.45144 32.45144 56.29280

.05 .0571375 .7097125 -.4514375 .0983878 11.37472 17.19360 29.19360 49.42979

.1 .0849835 .7081857 -1.1886072 .1327246 13.61488 19.91867 32.91867 56.76003

.15 .1264004 .7033769 -1.2246731 .1759992 14.07468 20.37846 33.37846 57.21982

.2 .1880019 .6916270 -1.3127974 .2264768 14.91420 21.21799 34.21799 58.05935

.7 .6185911 .5735386 -2.1984603 .3974809 22.95663 29.26041 42.26041 66.10178

.8 .9200627 .2063196 -.4881507 .4632527 44.27396 47.66831 54.66831 56.87865

Table 4: Quality measures for several fanc solutions with LASSO penalty
for Five Socio-Economic Variables, (Harman, 1976, p.14).

Note, that ρ0 is the input value for fanc, while ρ is the actual value of the
tuning parameter used by fanc to produce the loadings. According to all goodness-
of-fit measures and the information criteria collected in Table 4, the solution with
ρ0 = .05 seems to be the best one indeed. What seems surprising is that fanc is
incapable to produce sparser solutions, containing more zeros than three. Instead,
the increase of ρ0 results in loadings containing only two zeros. Such solutions
are depicted in Table 3 with ρ = .1 and in Table 5 with ρ = .7. As ρ controls
the importance of the penalty term, it is logical to expect and desirable to have
sparser loadings with larger ρ, which is not the case. Moreover, further increase of
ρ (≥ .8) simply results in invalid solutions containing one zero column. The remedy
proposed by Hirose and Yamamoto (2014) is to replace the LASSO constraint by
the MC+ one. The best solution we found is with ρ = 1.6, γ = 1.5, and is depicted
in Table 5. It has five zero loadings and ML fit 1.159163. In order to get sparser
solutions Hirose and Yamamoto (2014) suggest trying correlated factors. We were
unable to identify a pair of parameters (ρ, γ) for which the oblique solution provides
better sparseness and/or ML fit. For comparison, the SEFA solution with τ = .9
is depicted in the last three columns of Table 5. It has six zero loadings and even
better (lower) minimum of the objective function (3).

VARS ρ = .7 ρ = 1.6, γ = 1.5 SEFA (τ = .6)
Λ Ψ2 Λ Ψ2 QD Ψ2

POP .705 -.015 .005 .690 .005 .971 -.000 .054
SCHOOL .554 .214 .684 .007 .000 .760 .266
EMPLOY .677 .053 .037 .663 .077 .030 1.00 .000 .000
SERVICES .229 .477 .211 1.00 .000 .000 1.00
HOUSE .645 .076 .449 .299 .000 1.00 .000
Value of (3) -0.254 1.159 0.758
-

Table 5: More fanc solutions with LASSO penalty for Five Socio-Economic
Variables, (Harman, 1976, p.14). The solution for ρ = .8 has an empty (zero)
second column.

With this simple example we demonstrate that fanc has two serious drawbacks
to be taken into account for practical use. First, fanc is incapable to produce full
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range of sparse solutions. Second, the relationship between the sparseness and the
parameter ρ for its control is not linear. This considerably complicates the location
of an optimal ρ (which provides a reasonable fit with a sensible sparseness) – the
main difficulty in any sparse analysis of large data. The presence of another
parameter γ for MC+, puts additional difficulty in the fanc application.

Now, let us move to the Twenty-Four Psychological Tests (Harman, 1976,
p.123). The standard ML solution (fanc with ρ = 0) has four zeros. The solution
with ρ = 0.1 seems the sparsest possible with LASSO penalty and has 26 zeros.
The further increase of ρ produces invalid solutions. For ρ = 0.14, the loadings
already have one zero column. Then, let us replace the LASSO constraint by MS+.
Hirose and Yamamoto (2014) find solution with ρ = .02, γ = 4 which resembles
the PROMAX solution. This solution is not satisfactory, it is not sparse enough
as it has 70 non-zero loadings. The best solution they find with MS+ constraint
is with ρ = .14, γ = 1.1, which still has plenty of non-zero loadings, 59. Our
solution with the same (ρ, γ) in Table 6 is nearly identical to the one reported
in (Hirose and Yamamoto, 2014, Table 4.). In order to get sparser solutions,
Hirose and Yamamoto (2014) suggest employing correlated factors. For this data
set this strategy pays off. The best solution with oblique factors obtained with
ρ = .21, γ = 1.1 is reported in (Hirose and Yamamoto, 2014, Table 4.) and has
only 28 non-zero loadings. After several runs of fanc, we are unable to repeat this
solution. Our solution with oblique factors and same (ρ, γ) is depicted in Table 6
and has 36 non-zero loadings.

Orth, ρ = 0 Orth, ρ = .1 Orth, ρ = .14, γ = 1.1 Oblique ρ = .21, γ = 1.1

Λ Ψ2 Λ Ψ2 Λ Ψ2 Λ Ψ2

1 .06 .38 .64 .06 .44 .12 .54 .45 .45 .57 .09 .46 .73 .47
2 .03 .25 .40 0 .78 .06 .30 .79 .28 .38 .78 .47 .78
3 .04 .29 .51 -.12 .64 .10 .38 -.07 .68 .29 .52 .65 .55 .69
4 -.02 .38 .45 -.02 .65 .16 .35 .67 .40 .43 .66 .58 .66
5 -.07 .80 .01 .07 .35 .61 .09 .36 -.02 .78 -.17 .36 .80 .35
6 .01 .83 -.08 .31 .03 .64 .32 .77 -.32 .31 .81 .34
7 -.15 .83 -.01 .28 -.04 .65 .02 .30 -.17 .78 -.25 .29 .83 .32
8 -.05 .68 .20 .10 .49 .46 .15 .07 .50 .69 .15 .50 .22 .57 .50
9 .86 -.02 -.11 .26 .00 .68 -.01 .26 .79 -.36 .25 -.08 .90 .24
10 .07 .31 -.07 .81 .24 .07 .73 .23 .52 -.32 .63 .24 -.38 1.0 .21
11 .27 .38 .12 .46 .55 .20 .12 .10 .37 .56 .26 .52 .34 .54 .46 -.28 .57
12 .02 .21 .27 .67 .44 .21 .52 .48 .42 .61 .45 .70 .50
13 -.03 .39 .43 .42 .49 .11 .34 .30 .54 .52 .25 .37 .52 .31 .47 .52
14 .47 .35 .00 .05 .65 .42 .16 .01 .64 .45 .37 .66 -.56 .69
15 .46 .29 .08 .05 .70 .37 .10 .06 .71 .45 .32 .69 -.53 .72
16 .46 .31 .38 .55 .34 .06 .31 .57 .42 .35 .37 .55 .35 -.37 .61
17 .50 .34 .04 .20 .60 .42 .11 .03 .13 .61 .50 .40 .59 -.67 .54
18 .39 .27 .31 .29 .59 .27 .01 .26 .19 .61 .35 .39 .21 .27 .59 .24 -.46 .62
19 .29 .32 .20 .11 .76 .16 .11 .17 .04 .79 .24 .37 .18 .77 -.49 .76
20 .16 .54 .30 .00 .59 .07 .31 .25 .60 .56 .30 .60 .41 .33 .58
21 .12 .38 .36 .35 .58 .12 .33 .26 .58 .51 .26 .32 .57 .34 .42 .57
22 .17 .53 .30 .01 .60 .05 .30 .26 .61 .55 .30 .61 .40 .33 .59
23 .09 .56 .41 .11 .50 .30 .36 .06 .49 .61 .36 .50 .51 .30 .49
24 .16 .54 .10 .41 .50 .05 .28 .11 .36 .51 .65 .26 .51 .51 .29 .51
(3) 14.28 14.95 14.41 14.66

Table 6: Several fanc solutions with LASSO (γ =∞) and MS+ penalty for
Twenty-Four Psychological Tests (Harman, 1976, p.123).

The correlations among the oblique factors for our (.21, 1.1)-fanc solution are:
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Φ =


1.0 .51 −.52 .50
.51 1.0 −.51 .47
−.52 −.51 1.0 −.49
.50 .47 −.49 1.0

 .

Clearly, the solution with oblique factors looks better, than the orthogonal
one. Indeed, the corresponding values of the index of sparseness (13) are 0.3805
and 0.1472 respectively. Nevertheless, we see again that fanc is unable to produce
solutions with arbitrary sparseness. The fanc problems to achieve reasonable
sparseness with LASSO, further continue when applying the MC+ penalty. For
some data, fanc can achieve better sparseness by employing correlated (oblique)
factors. This looks as a way to boost the performance of the numerical method
without clear benefit for the EFA solution, e.g. better fit. As illustrated in Table 2,
the same problem can be solved by SEFA very satisfactory.

Finally, we mention briefly the two other methods proposed by Choi et al.
(2011) and Ning and Georgiou (2011). Choi et al. (2011) find sparse factor loadings
Λ by minimizing (3) and adding to it a LASSO type constraint (λ‖Λ‖1). The
minimization is carried out by an EM algorithm and the sparsification of Λ is
achieved by the LARSEN algorithm. However, the available code GEM (Generalized
Expectation-Maximization algorithm) realizing the method does not work properly.
A GEM solution (with switched off sparsification) is depicted in the second three
columns of Table 7. This solution is very different from any known ML-EFA
solution (Harman, 1976). For example, the ML-EFA solution obtained by SEFA

(with µ = 0) is depicted in the first three columns of Table 7. It is not surprising
(because of the EFA reparameterization) that this solution is nearly identical to
the canonical form solution (Harman, 1976, Table 10.5). The fanc solution (with
ρ = 0) is very similar to the standard ML solution (Harman, 1976, Table 10.5).
The value of the ML objective function (3) obtained by GEM is much higher than
both SEFA and fanc. It looks like GEM has some kind of normalization problem.

VARS SEFA GEM fanc

Λ = QD Ψ2 Λ Ψ2 QD Ψ2

POP .783 .622 .000 .282 .026 .005 .997 .007 .005
SCHOOL -.552 .711 .190 .033 -.254 .018 .008 .898 .193
EMPLOY .689 .697 .040 .283 -.006 .005 .974 .124 .036
SERVICES -.147 .891 .184 .148 -.215 .015 .433 .792 .185
HOUSE -.579 .766 .078 .031 -.278 .005 .014 .962 .074
Value of (3) -1.0758 63.0146 -1.0723

Table 7: Three ML-EFA solutions for Five Socio-Economic Variables, (Har-
man, 1976, p.14).

To obtain sparse loadings by GEM one needs to increase the value of the tuning
parameter (λ). However, GEM starts to produce very frequently loadings matrices
Λ with zero column, or does not converge at all. For this reason, GEM is not
considered any further.
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Ning and Georgiou (2011) consider the same spares ML-EFA formulation as
in (Choi et al., 2011), but propose different algorithm for its minimization. Their
algorithm is guaranteed to converge for rather small values of λ > 0. This indicates
that the method may not be able to obtain arbitrary level of sparseness. The codes
realizing their algorithm are not available for additional checks of its performance.

7 Concluding remarks

The well-established practice to interpret factor loadings by setting to zero load-
ings smaller in magnitude than certain threshold value, makes the factor loadings
matrix sparse artificially and subjectively. The idea behind the sparse EFA is to
eliminate this subjective thresholding of the factor loadings and obtain their values
in an optimal way.

We propose sparse versions of the classic ML- and LS-EFA by adding penalty
term which drives some of the factor loadings to zero. To achieve this, we intro-
duce new FA parameterization which replaces the original factor loadings Λ with
two new unknowns, an othonormal Q and diagonal D (Section 3). The new model
absorbs both cases of uncorrelated and correlated factors, which are otherwise
considered separately by classic EFA. The benefit of this PCA-like parameteri-
zation is demonstrated in the numerical examples: the sparseness and fit of a
FANC solution with correlated factors (Table 6) are easily achieved by the pro-
posed method/parameterization (Table 2). The specific features of the new EFA
model are additionally utilized to obtain sparse loadings.

The resulting sparse loadings are obtained in an optimal way and are easily
interpretable. The level of sparseness of the loadings is effectively controlled by a
tuning parameter τ . Its reduction enforces sparser loadings. The extreme value
of τ = 1 results in factor loadings matrix with a single non-zero entry per col-
umn/factor. The importance of the penalty term can be additionally controlled
by another tuning parameter µ. However, involving two parameters (µ and τ) is
unnecessary complication of the problem. In practice, µ is only used to switch
between sparse and ordinary EFA.

The new EFA procedures readily produce interpretable factor loadings. Un-
fortunately, this is achieved on the expense of loosing some portion of the fit of
the sparse EFA model (2) to the sample correlation matrix R. Further research is
needed to quantify this loss, and possibly relate it to the sparseness of the factor
loadings in new sparse EFA algorithms. This is a very tricky aspect of the sparse
methods and requires adjustment of the involved tuning parameters controlling
the balance between the model fit and the sparsity, i.e. the interpretability of the
results. Here, we employed specially designed index of sparseness. Other possible
options are to adapt standard information criteria, e.g. Hirose and Yamamoto
(2015), or rely on cross-validation procedures, e.g. Choi et al. (2011). In any case,
this additionally complicates the overall application of the sparse methods.

Note, that the columns of the new factor loadings QD are always orthogonal.
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In fact, the orthonormality of Λ is not quite new for classic EFA. For example,
the classic LS-EFA requires Λ>Λ to be diagonal (6). The rotation methods (e.g.
VARIMAX) do not produce orthonormal loadings matrix. They try to generate
loadings with either large or small magnitudes. That is the main point, why sparse
loadings are preferred for clear interpretation. As the small loadings are not zero,
one is inevitably forced to subjectively decide which small is small enough to be
dropped off consideration, i.e. be taken effectively as zero. This is the main goal
of the proposed sparse EFA: to avoid such subjective choices.

A weakness of the proposed method is that it tends to produce few very small
non-zero loadings. It makes sense to consider replacing LASSO by some ”harder”
thresholding. Our main future interest is to focus on developing sparse EFA al-
gorithms for analyzing large data. The currently available algorithms (the one
proposed here and the others by Choi et al. (2011); Hirose and Yamamoto (2015);
Ning and Georgiou (2011)) are not very appropriate to serve this purpose for a
number of reasons. In general, the available methods for sparse EFA are not sat-
isfactory compared to the available methods for sparse PCA. We believe, that the
present work will inspire interest in this new and challenging problem.
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Appendix 1

Here we find the gradient of the penalty term Pτ (Q)>Pτ (Q) in (11) and (12),
which can be then combined with the gradients of the objective functions of ML-,
LS-, or GLS-EFA. Let start with

d(P (Qτ )>Pτ (Q)) = 2d(Pτ (Q))>Pτ (Q) = 2d(Pτ )>Pτ , (14)

which requires the calculation of d(Pτ ). At this point we need an approximation
of sign(x), and we employ the one already used in (Trendafilov and Jolliffe, 2006),
which is sign(x) ≈ tanh(γx) for some large γ > 0, or for short th(γx). See also
(Hage and Kleinsteuber, 2014; Luss and Teboulle, 2013). Then

2(dPτ ) = (dqτ )� [1r + th(γqτ )] + qτ � [1r − th2(γqτ )]� γ(dqτ ) ,

= (dqτ )�
{

1r + th(γqτ ) + γqτ � [1r − th2(γqτ )]
}
, (15)

where 1r is a r × 1 vector with unit entries. The next differential to be found is:

dqτ = 1>p
{

(dQ)� th(γQ) +Q� [1p×r − th2(γQ)]� γ(dQ)
}

= 1>p
{

(dQ)� {th(γQ) + (γQ)� [1p×r − th2(γQ)}
}
, (16)
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where 1p×r is a p× r matrix with unit entries.
Now we are ready to find the gradient ∇Q of the penalty term with respect to

Q. To simplify the notations, let

w = 1r + th(γqτ ) + (γqτ )� [1r − th2(γqτ )] , (17)

and
W = th(γQ) + (γQ)� [1p×r − th2(γQ)] . (18)

Going back to (14) and (15), we find that:

2(dPτ )>Pτ = trace[(dqτ )�w]>Pτ = trace(dqτ )>(w � Pτ )

= trace{1>p [(dQ)�W ]}>(w � Pτ )

= trace[(dQ)> �W>]1p(w � Pτ )

= trace(dQ)>{W � [1p(w � Pτ )]} , (19)

making use of the identity trace(A�B)C = traceA(B> � C). Thus, the gradient
∇Q of the penalty term with respect to Q is:

∇Q = W � [1p(w � Pτ )] . (20)

Appendix 2

Here we summarize some technical details related to the numerical solutions em-
ployed in the work.

The gradients of the ML-, LS- and GLS-EFA objective functions with re-
spect to the unknowns {Q,D,Ψ} are given in Trendafilov (2003) as the follow-
ing block-matrix: (−Y QD2,−QTY Q �D,−Y � Ψ). For ML-EFA, one has Y =
2R−1

ZZ(R−RZZ)R−1
ZZ , and for LS- and GLS-EFA it changes to Y = 4(R−RZZ)V 2.

Additionally, we need the gradient ∇Q of the penalty term Pτ (Q)>Pτ (Q) with
respect to Q, which should be added to −Y QD2. Its derivation is given in details
in the Appendix.

The dynamical system approach employed in (Trendafilov, 2003) can be read-
ily applied for solving (11) and (12). It involves numerical integration of matrix
ordinary differential equations (ODE) for {Q,D,Ψ} defined by their projected gra-
dients. Particularly, it involves projected gradient dynamical system for Q on the
Stiefel manifold of all p×r orthonormal matrices. There exist a number of special-
ized numerical methods for solving such problem listed in (Trendafilov, 2003), e.g.
Del Buono and Lopez (2001) and etc. In contrast to the standard EFA alternating
approaches (Jöreskog, 1977; Mulaik, 2010), the dynamical system approach gives
matrix algorithms which produce simultaneous solution for {Q,D,Ψ} exploiting
the geometry of their specific matrix structures. Moreover, such algorithms are
globally convergent, i.e. the convergence is reached independently of the starting
(initial) point (Absil et al., 2008; Trendafilov, 2003).
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The numerical ODE solvers currently available in MATLAB (MATLAB, 2014)
are not suitable for solving large optimization problems. They track the whole
trajectory defined by the ODE which is time-consuming and undesirable when the
asymptotic state is of interest only. This limits the application of the proposed
approach to solving (11) and (12) for rather small data sets.

An alternative way is to employ iterative algorithms directly working on matrix
manifolds (Absil et al., 2008; Edelman et al., 1998; Wen and Yin, 2013). The listed
above gradients can be readily used for solving (11) and (12) by employing MANOPT,
a free MATLAB-based software for optimization on matrix manifolds (Boumal et al.,
2014). The MANOPT code for solving (11) and (12) can be obtained from the authors
upon request, and will be available online. Note that by choosing µ = 0, one can
obtain solutions for the standard ML-, LS- and GLS-EFA problems (9) and (10).
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