1,044 research outputs found

    Tricritical Point in Quantum Phase Transitions of the Coleman-Weinberg Model at Higgs Mass

    Get PDF
    The tricritical point, which separates first and second order phase transitions in three-dimensional superconductors, is studied in the four-dimensional Coleman-Weinberg model, and the similarities as well as the differences with respect to the three-dimensional result are exhibited. The position of the tricritical point in the Coleman-Weinberg model is derived and found to be in agreement with the Thomas-Fermi approximation in the three-dimensional Ginzburg-Landau theory. From this we deduce a special role of the tricritical point for the Standard Model Higgs sector in the scope of the latest experimental results, which suggests the unexpected relevance of tricritical behavior in the electroweak interactions.Comment: 5 pages, 1 figure, published in Phys. Lett.

    Reentrant Phenomenon in Quantum Phase Diagram of Optical Boson Lattice

    Full text link
    We calculate the location of the quantum phase transitions of a bose gas trapped in an optical lattice as a function of effective scattering length a_{\eff} and temperature TT. Knowledge of recent high-loop results on the shift of the critical temperature at weak couplings is used to locate a {\em nose} in the phase diagram above the free Bose-Einstein critical temperature Tc(0)T_c^{(0)}, thus predicting the existence of a reentrant transition {\em above} Tc(0)T_c^{(0)}, where a condensate should form when {\em increasing} a_{\eff}. At zero temperature, the transition to the normal phase produces the experimentally observed Mott insulator.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.htm

    Analytical study of level crossings in the Stark-Zeeman spectrum of ground state OH

    Full text link
    The ground electronic, vibrational and rotational state of the OH molecule is currently of interest as it can be manipulated by electric and magnetic fields for experimental studies in ultracold chemistry and quantum degeneracy. Based on our recent exact solution of the corresponding effective Stark-Zeeman Hamiltonian, we present an analytical study of the crossings and avoided crossings in the spectrum. These features are relevant to non-adiabatic transitions, conical intersections and Berry phases. Specifically, for an avoided crossing employed in the evaporative cooling of OH, we compare our exact results to those derived earlier from perturbation theory.Comment: 5 figures, to be published in Eur. Phys. J.

    Recursive Graphical Construction of Feynman Diagrams in phi^4 Theory: Asymmetric Case and Effective Energy

    Get PDF
    The free energy of a multi-component scalar field theory is considered as a functional W[G,J] of the free correlation function G and an external current J. It obeys non-linear functional differential equations which are turned into recursion relations for the connected Greens functions in a loop expansion. These relations amount to a simple proof that W[G,J] generates only connected graphs and can be used to find all such graphs with their combinatoric weights. A Legendre transformation with respect to the external current converts the functional differential equations for the free energy into those for the effective energy Gamma[G,Phi], which is considered as a functional of the free correlation function G and the field expectation Phi. These equations are turned into recursion relations for the one-particle irreducible Greens functions. These relations amount to a simple proof that Gamma[G,J] generates only one-particle irreducible graphs and can be used to find all such graphs with their combinatoric weights. The techniques used also allow for a systematic investigation into resummations of classes of graphs. Examples are given for resumming one-loop and multi-loop tadpoles, both through all orders of perturbation theory. Since the functional differential equations derived are non-perturbative, they constitute also a convenient starting point for other expansions than those in numbers of loops or powers of coupling constants. We work with general interactions through four powers in the field.Comment: 34 pages; abstract expanded; section IV.E about absorption of tadpoles and one related reference added; eqs. (20) and (23) corrected; further references added; some minor beautifications; to be published by Phys.Rev.

    Manufacturing a thin wire electrostatic trap (TWIST) for ultracold polar molecules

    Full text link
    We present a detailed description on how to build a Thin WIre electroStatic Trap (TWIST) for ultracold polar molecules. It is the first design of an electrostatic trap that can be superimposed directly onto a magneto optical trap (MOT). We can thus continuously produce ultracold polar molecules via photoassociation from a two species MOT and instantaneously trap them in the TWIST without the need for complex transfer schemes. Despite the spatial overlap of the TWIST and the MOT, the two traps can be operated and optimized completely independently due to the complementary nature of the utilized trapping mechanisms.Comment: 5 pages, 8 figures, updated conten

    Gapless Hartree-Fock-Bogoliubov Approximation for Bose Gases

    Full text link
    A dilute Bose system with Bose-Einstein condensate is considered. It is shown that the Hartree-Fock-Bogolubov approximation can be made both conserving as well as gapless. This is achieved by taking into account all physical normalization conditions, that is, the normalization condition for the condensed particles and that for the total number of particles. Two Lagrange multipliers, introduced for preserving these normalization conditions, make the consideration completely self-consistent.Comment: Latex file, 22 pages, 2 figure

    The quantum smectic as a dislocation Higgs phase

    Get PDF
    The theory describing quantum-smectics in 2+1 dimensions, based on topological quantum melting is presented. This is governed by a dislocation condensate characterized by an ordering of Burger's vector and this `dual shear superconductor' manifests itself in the form of a novel spectrum of phonon-like modes.Comment: 5 pages, 3 figures; minor changes in the tex

    Gauge-invariant critical exponents for the Ginzburg-Landau model

    Full text link
    The critical behavior of the Ginzburg-Landau model is described in a manifestly gauge-invariant manner. The gauge-invariant correlation-function exponent is computed to first order in the 4d4-d and 1/n1/n-expansion, and found to agree with the ordinary exponent obtained in the covariant gauge, with the parameter α=1d\alpha=1-d in the gauge-fixing term (μAμ)2/2α(\partial_\mu A_\mu)^2 /2 \alpha.Comment: 4 pages, no figure

    Trapping of ultracold polar molecules with a Thin Wire Electrostatic Trap

    Full text link
    We describe the realization of a dc electric-field trap for ultracold polar molecules, the thin-wire electrostatic trap (TWIST). The thin wires that form the electrodes of the TWIST allow us to superimpose the trap onto a magneto-optical trap (MOT). In our experiment, ultracold polar NaCs molecules in their electronic ground state are created in the MOT via photoassociation, achieving a continuous accumulation in the TWIST of molecules in low-field seeking states. Initial measurements show that the TWIST trap lifetime is limited only by the background pressure in the chamber.Comment: 4 pages, 3 figure

    Diagrammatic calculation of energy spectrum of quantum impurity in degenerate Bose-Einstein condensate

    Full text link
    In this paper we considered a quantum particle moving through delute Bose-Einstein condensate at zero temperature. In our formulation the impurity particle interacts with the gas of uncoupled Bogoliubov's excitations. We constructed the perturbation theory for the Green's function of the impurity particle with respect to the impurity-condensate interaction employing the coherent-state path integral approach. The perturbative expansion for the Green's function is resumed into the expansion for its poles with the help of the diagrammatic technique developed in this work. The dispersion relation for the impurity clothed by condensate excitations is obtained and effective mass is evaluated beyond the Golden rule approximation
    corecore