24 research outputs found

    Terahertz Spectroscopy System of Gas Mixtures Based on a Solid State Superconducting Source and a Terahertz Receiver

    Get PDF
    Abstract: The application of a Josephson generator of the terahertz range based on a long superconductor–insulator–superconductor tunnel junction matched with a transmitting antenna and emitting a signal into open space is demonstrated for gas spectroscopy. The generator is used as an active source, the signal of which is absorbed by a sample of a gas mixture in a cell with a length of 60 cm and then recorded by a spectrometer based on a superconductor–insulator–superconductor receiver with a spectral resolution better than 100 kHz. In the experiment, the absorption lines of ammonia and water in the terahertz range were recorded, and the dependence of the spectral characteristics of the absorption lines on the pressure of the gas mixture in a wide range (from 0.005 to 10 mbar) was demonstrated

    An Antenna with a Feeder for a Superconducting Terahertz Josephson Oscillator with Phase Locking

    Get PDF
    A principal layout of a Josephson terahertz radiation oscillator integrated with a transmitting antenna-lens system and a harmonic mixer (HM) for phase locking of radiation has been proposed and was successfully implemented. Two antenna-feeder systems designed for the central frequencies of 0.3 and 0.6 THz and located on the same chip with the oscillator are numerically simulated and fabricated. A microstrip transmission line between the oscillator and the antenna is used as the feeder. A study was carried out on matching the oscillator power and HM for two designs; the frequency range of pumping HM was 0.25-0.45 and 0.5-0.68 THz for the designs at 0.3 and 0.6 THz, respectively. Good agreement was obtained between experimental results and numerical simulations. A study of the spectral characteristics of the radiation of the oscillator into the external space for the 0.6 THz design using a superconducting integrated spectrometer was carried out. The linewidth of an emission line in free-running regime was of the order of several megahertz; in the phase locking regime down to tens of kilohertz with a signal-to-noise ratio of more than 20 dB was obtained

    A superconducting flux-flow oscillator of terahertz range

    Get PDF
    We have elaborated, fabricated and tested a THz source radiating to open space based on the superconducting flux-flow oscillator (FFO). In this concept, the oscillator is integrated with the transmitting lens antenna based on a slot structure in Nb film with a thickness of ∼200 nm located on the same chip. The slot planar antenna is matched to the oscillator (by input) and to the semielliptical Si lens with a diameter of 10 mm (by output) providing a narrow output beam of THz emission. A harmonic mixer based on the superconductor-insulator-superconductor junction embedded in the "FFO and antenna" integrated structure has been used for the phase locking of the oscillator. Several designs of antenna coupled with the oscillator by microstrip lines have been numerically simulated, and the batches of experimental samples based on Nb-AlN-NbN superconducting trilayers with Rn •A ∼ 20 Ω•μm2 (jc ∼ 10 kA/cm2) have been fabricated and tested. Two different setups were used for experimental study: A THz spectrometer based on the SIS receiver with a high spectral resolution (better than 0.1 MHz) and a Si bolometer. The overall operating range of 250 to 700 GHz is covered by all the developed designs

    Low dose cranial irradiation-induced cerebrovascular damage is reversible in mice

    Get PDF
    BACKGROUND: High-dose radiation-induced blood-brain barrier breakdown contributes to acute radiation toxicity syndrome and delayed brain injury, but there are few data on the effects of low dose cranial irradiation. Our goal was to measure blood-brain barrier changes after low (0.1 Gy), moderate (2 Gy) and high (10 Gy) dose irradiation under in vivo and in vitro conditions. METHODOLOGY: Cranial irradiation was performed on 10-day-old and 10-week-old mice. Blood-brain barrier permeability for Evans blue, body weight and number of peripheral mononuclear and circulating endothelial progenitor cells were evaluated 1, 4 and 26 weeks postirradiation. Barrier properties of primary mouse brain endothelial cells co-cultured with glial cells were determined by measurement of resistance and permeability for marker molecules and staining for interendothelial junctions. Endothelial senescence was determined by senescence associated β-galactosidase staining. PRINCIPLE FINDINGS: Extravasation of Evans blue increased in cerebrum and cerebellum in adult mice 1 week and in infant mice 4 weeks postirradiation at all treatment doses. Head irradiation with 10 Gy decreased body weight. The number of circulating endothelial progenitor cells in blood was decreased 1 day after irradiation with 0.1 and 2 Gy. Increase in the permeability of cultured brain endothelial monolayers for fluorescein and albumin was time- and radiation dose dependent and accompanied by changes in junctional immunostaining for claudin-5, ZO-1 and β-catenin. The number of cultured brain endothelial and glial cells decreased from third day of postirradiation and senescence in endothelial cells increased at 2 and 10 Gy. CONCLUSION: Not only high but low and moderate doses of cranial irradiation increase permeability of cerebral vessels in mice, but this effect is reversible by 6 months. In-vitro experiments suggest that irradiation changes junctional morphology, decreases cell number and causes senescence in brain endothelial cells

    Study of Josephson Generation Harmonics in a Long Josephson Junction

    Get PDF
    We present the results of experimental study of the harmonics of Josephson radiation from a terahertz (THz) source based on a long Josephson junction (LJJ). The source consists of an integrated circuit including the LJJ, a matched transmitting antenna, and a harmonic mixer used for phase locking of the output signal. The LJJ and the harmonic mixer are both made of three-layer Nb-AlOx-Nb superconductor–insulator–superconductor (SIS) structures and operate at a temperature of 4.2 K. The antenna is located in the base superconducting Nb electrode of the microcircuit. To study the spectral composition and characteristics of the output radiation, two different methods were employed, using a THz Fourier transform spectrometer based on a broadband semiconductor detector and using a high-resolution THz spectrometer based on a heterodyne SIS receiver. The spectral composition of the radiation demonstrates the presence of both the fundamental harmonic of the Josephson effect and the higher harmonics. The spectral characteristics of the fundamental (at frequencies of 300–335 GHz) and the second (at frequencies of 600–670 GHz) harmonics, respectively, with a spectral resolution of about 0.1 MHz were studied using a SIS detector.</p

    Flux-flow Josephson oscillator as the broadband tunable terahertz source to open space

    Get PDF
    The flux-flow oscillator (FFO) based on a long Josephson junction has been implemented as a broadband tunable terahertz (THz) source to open space. For this purpose, the transmitting slot antenna has been coupled to the oscillator. Additionally, an elliptical lens with a diameter of 10 mm has been matched to the antenna, forming a narrow output beam of the THz emission. Two designs for the antenna, integrated with the oscillator and developed for operation at different frequency ranges of 0.32-0.55 THz and 0.4-0.7 THz, have been investigated. The FFO has been phase locked to an external reference oscillator by utilizing a harmonic mixer. Its linewidth in the phase-locking regime is determined by the phase noise of the reference oscillator and the number of harmonics used and has been measured to be less than 0.1 MHz. A free-running FFO linewidth from about 2 MHz to several MHz, depending on the operating point, has been obtained. Output emission to open space has been measured by a superconducting integrated spectrometer located in a separate cryostat. The FFO operation as an external source with the achieved emission power and spectral characteristics has demonstrated its applicability for different tasks and purposes where tunable THz sources are required.</p

    Slot Lens Antenna Based on Thin Nb Films for the Wideband Josephson Terahertz Oscillator

    Get PDF
    An oscillator based on the distributed tunnel superconductor-insulator-superconductor junction with an ultrawide operating bandwidth of up to 100% of the central frequency seems to be a promising type of directional source of continuous electromagnetic radiation in the terahertz frequency range. In this paper, we propose a scheme of a terahertz oscillator integrated on a single microchip with a transmitting lens antenna with the slot structure in a 200-nm Nb film to radiate the signal into the open space. We also proposed and numerically simulated several designs of a planar slot antenna matched (in the input) with a Josephson oscillator and (in the output) with a silicon elliptical lens. The obtained results of the matching of the oscillator output power with the antenna of various designs operating in four frequency ranges: 250-410, 330-570, 380-520, and 420-700 GHz are presented. The antenna beam patterns and impedances are calculated as well
    corecore