49 research outputs found

    A neuroradiologist’s guide to arterial spin labeling MRI in clinical practice

    Get PDF

    Effect of subanaesthetic ketamine on plasma and saliva cortisol secretion

    No full text
    Perioperative Medicine: Efficacy, Safety and Outcom

    The Montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing psychosocial stress in the human brain

    No full text
    Objective: We developed a protocol for inducing moderate psychologic stress in a functional imaging setting and evaluated the effects of stress on physiology and brain activation.; Methods: The Montreal Imaging Stress Task (MIST), derived from the Trier Mental Challenge Test, consists of a series of computerized mental arithmetic challenges, along with social evaluative threat components that are built into the program or presented by the investigator. To allow the effects of stress and mental arithmetic to be investigated separately, the MIST has 3 test conditions (rest, control and experimental), which can be presented in either a block or an event-related design, for use with functional magnetic resonance imaging (fMRI) or positron emission tomography (PET). In the rest condition, subjects look at a static computer screen on which no tasks are shown. In the control condition, a series of mental arithmetic tasks are displayed on the computer screen, and subjects submit their answers by means of a response interface. In the experimental condition, the difficulty and time limit of the tasks are manipulated to be just beyond the individual’s mental capacity. In addition, in this condition the presentation of the mental arithmetic tasks is supplemented by a display of information on individual and average performance, as well as expected performance. Upon completion of each task, the program presents a performance evaluation to further increase the social evaluative threat of the situation.; Results: In 2 independent studies using PET and a third independent study using fMRI, with a total of 42 subjects, levels of salivary free cortisol for the whole group were significantly increased under the experimental condition, relative to the control and rest conditions. Performing mental arithmetic was linked to activation of motor and visual association cortices, as well as brain structures involved in the performance of these tasks (e.g., the angular gyrus).; Conclusions: We propose the MIST as a tool for investigating the effects of perceiving and processing psychosocial stress in functional imaging studies

    Manipulating brain connectivity with δ⁹-tetrahydrocannabinol: a pharmacological resting state FMRI study.

    No full text
    Resting state-functional magnetic resonance imaging (RS-FMRI) is a neuroimaging technique that allows repeated assessments of functional connectivity in resting state. While task-related FMRI is limited to indirectly measured drug effects in areas affected by the task, resting state can show direct CNS effects across all brain networks. Hence, RS-FMRI could be an objective measure for compounds affecting the CNS. Several studies on the effects of cannabinoid receptor type 1 (CB(1))-receptor agonist δ(9)-tetrahydrocannabinol (THC) on task-dependent FMRI have been performed. However, no studies on the effects of cannabinoids on resting state networks using RS-FMRI have been published. Therefore, we investigated the effects of THC on functional brain connectivity using RS-FMRI. Twelve healthy volunteers (9 male, 3 female) inhaled 2, 6 and 6 mg THC or placebo with 90-minute intervals in a randomized, double blind, cross-over trial. Eight RS-FMRI scans of 8 min were obtained per occasion. Subjects rated subjective psychedelic effects on a visual analog scale after each scan, as pharmacodynamic effect measures. Drug-induced effects on functional connectivity were examined using dual regression with FSL software (FMRIB Analysis Group, Oxford). Eight maps of voxel-wise connectivity throughout the entire brain were provided per RS-FMRI series with eight predefined resting-state networks of interest. These maps were used in a mixed effects model group analysis to determine brain regions with a statistically significant drug-by-time interaction. Statistical images were cluster-corrected, and results were Bonferroni-corrected across multiple contrasts. THC administration increased functional connectivity in the sensorimotor network, and was associated with dissociable lateralized connectivity changes in the right and left dorsal visual stream networks. The brain regions showing connectivity changes included the cerebellum and dorsal frontal cortical regions. Clear increases were found for feeling high, external perception, heart rate and cortisol, whereas prolactin decreased. This study shows that THC induces both increases and (to a lesser extent) decreases in functional brain connectivity, mainly in brain regions with high densities of CB(1)-receptors. Some of the involved regions could be functionally related to robust THC-induced CNS-effects that have been found in previous studies (Zuurman et al., 2008), such as postural stability, feeling high and altered time perception
    corecore