48 research outputs found
Recommended from our members
The Earth System Grid Federation: software framework supporting CMIP5 data analysis and dissemination
Magnetism, elasticity, and magnetostriction of FeCoGa alloys
It is known that the substitution of Co for Fe gives rise to increases in magnetization and Curie temperature, not only in the bcc metals, but also in intermetallic compounds and alloys as well. With the expectation that this is the case in Co-substituted FeGa, we measured magnetization, Curie temperature, magnetostriction and elastic constants of a series of polycrystalline FeCoGa ternary alloys with up to 17% Ga and up to 10% Co. The magnetostriction at saturation for Fe0.93−xCo.07Gax increases to 90 ppm for x=0.17. For larger percentages of Co, the rise in magnetostriction is not as sharp as it is in the 7% case. The shear elastic modulus decreases with Ga, again in keeping with the results for FeGa. The magnetostriction and the elastic constants are sensitive to sample preparation for the high-Ga material. We conclude that the substitution of small (\u3c0.10)percentages of Co for Fe in bcc FeCoGa alloys enhances the magnetic and magnetostrictive properties of the parent FeGa material
Pacific climate variability and the possible impact on global surface CO2 flux
<p>Abstract</p> <p>Background</p> <p>Climate variability modifies both oceanic and terrestrial surface CO2 flux. Using observed/assimilated data sets, earlier studies have shown that tropical oceanic climate variability has strong impacts on the land surface temperature and soil moisture, and that there is a negative correlation between the oceanic and terrestrial CO2 fluxes. However, these data sets only cover less than the most recent 20 years and are insufficient for identifying decadal and longer periodic variabilities. To investigate possible impacts of interannual to interdecadal climate variability on CO2 flux exchange, the last 125 years of an earth system model (ESM) control run are examined.</p> <p>Results</p> <p>Global integration of the terrestrial CO2 flux anomaly shows variation much greater in amplitude and longer in periodic timescale than the oceanic flux. The terrestrial CO2 flux anomaly correlates negatively with the oceanic flux in some periods, but positively in others, as the periodic timescale is different between the two variables. To determine the spatial pattern of the variability, a series of composite analyses are performed. The results show that the oceanic CO2 flux variability peaks when the eastern tropical Pacific has a large sea surface temperature anomaly (SSTA). By contrast, the terrestrial CO2 flux variability peaks when the SSTA appears in the central tropical Pacific. The former pattern of variability resembles the ENSO-mode and the latter the ENSO-modoki<sup>1</sup>.</p> <p>Conclusions</p> <p>Our results imply that the oceanic and terrestrial CO2 flux anomalies may correlate either positively or negatively depending on the relative phase of these two modes in the tropical Pacific.</p
Excitonic Correlations in the Intermetallic Fe2VAl
The intermetallic compound Fe2VAl looks non-metallic in transport and
strongly metallic in thermodynamic and photoemission data. It has in its band
structure a highly differentiated set of valence and conduction bands leading
to a semimetallic system with a very low density of carriers. The pseudogap
itself is due to interaction of Al states with the d orbitals of Fe and V, but
the resulting carriers have little Al character. The effects of generalized
gradient corrections to the local density band structure as well spin-orbit
coupling are shown to be significant, reducing the carrier density by a factor
of three. Doping of this nonmagnetic compound by 0.5 electrons per cell in a
virtual crystal fashion results in a moment of 0.5 bohr magnetons and destroys
the pseudogap. We assess the tendencies toward formation of an excitonic
condensate and toward an excitonic Wigner crystal, and find both to be
unlikely. We propose a model is which the observed properties result from
excitonic correlations arising from two interpenetrating lattices of
distinctive electrons (e_g on V) and holes (t_2g on Fe) of low density (one
carrier of each sign per 350 formula units).Comment: 8 2-column pages, 8 postscript figure
Long-Term climate change commitment and reversibility: An EMIC intercomparison
This is the final version of the article. Available from the American Meteorological Society via the DOI in this record.This paper summarizes the results of an intercomparison project with Earth System Models of Intermediate Complexity (EMICs) undertaken in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5). The focus is on long-term climate projections designed to 1) quantify the climate change commitment of different radiative forcing trajectories and 2) explore the extent to which climate change is reversible on human time scales. All commitment simulations follow the four representative concentration pathways (RCPs) and their extensions to year 2300. MostEMICs simulate substantial surface air temperature and thermosteric sea level rise commitment following stabilization of the atmospheric composition at year-2300 levels. The meridional overturning circulation (MOC) is weakened temporarily and recovers to near-preindustrial values in most models for RCPs 2.6-6.0. The MOC weakening is more persistent for RCP8.5. Elimination of anthropogenic CO2 emissions after 2300 results in slowly decreasing atmospheric CO2 concentrations. At year 3000 atmospheric CO2 is still at more than half its year-2300 level in all EMICs forRCPs 4.5-8.5. Surface air temperature remains constant or decreases slightly and thermosteric sea level rise continues for centuries after elimination ofCO2 emissions in allEMICs.Restoration of atmosphericCO2 fromRCPto preindustrial levels over 100-1000 years requires large artificial removal of CO2 from the atmosphere and does not result in the simultaneous return to preindustrial climate conditions, as surface air temperature and sea level response exhibit a substantial time lag relative to atmospheric CO2. © 2013 American Meteorological Society.KZ and AJW acknowledge support from the National Science and Engineering Research Council (NSERC) Discovery Grant Program. AJW acknowledges support from NSERC's G8 Research Councils Initiative on Multilateral Research Funding Program. AVE and IIM were supported by the President of Russia Grant 5467.2012.5, by the Russian Foundation for Basic Research, and by the programs of the Russian Academy of Sciences. EC, TF, HG, and GPB acknowledge support from the Belgian Federal Science Policy Office. FJ, RS, and MS acknowledge support by the Swiss National Science Foundation and by the European Project CARBOCHANGE (Grant 264879), which received funding from the European Commission's Seventh Framework Programme (FP7/2007–2013). PBH and NRE acknowledge support from EU FP7 Grant ERMITAGE 265170
NMR and Mossbauer study of spin dynamics and electronic structure of Fe{2+x}V{1-x}Al and Fe2VGa
In order to assess the magnetic ordering process in Fe2VAl and the related
material Fe2VGa, we have carried out nuclear magnetic resonance (NMR) and
Mossbauer studies. 27Al NMR relaxation measurements covered the temperature
range 4 -- 500 K in Fe(2+x)V(1-x)Al samples. We found a peak in the NMR
spin-lattice relaxation rate, 27T1^-1, corresponding to the magnetic
transitions in each of these samples. These peaks appear at 125 K, 17 K, and
165 K for x = 0.10, 0, and - 0.05 respectively, and we connect these features
with critical slowing down of the localized antisite defects. Mossbauer
measurements for Fe2VAl and Fe2VGa showed lines with no hyperfine splitting,
and isomer shifts nearly identical to those of the corresponding sites in Fe3Al
and Fe3Ga, respectively. We show that a model in which local band filling leads
to magnetic regions in the samples, in addition to the localized antisite
defects, can account for the observed magnetic ordering behavior.Comment: 5 pages, 3 figure