22 research outputs found

    Effects of small interfering RNA targeting thymidylate synthase on survival of ACC3 cells from salivary adenoid cystic carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thymidylate synthase (TS) is an important target for chemotherapeutic treatment of cancer and high expression of TS has been associated with poor prognosis or refractory disease in several cancers including colorectal and head and neck cancer. Although TS is known to regulate cell cycles and transcription factors, its potency as a therapeutic target has not been fully explored in adenoid cystic carcinoma (ACC).</p> <p>Methods</p> <p>An ACC cell line (ACC3) was transfected with siRNA targeting the TS gene and inhibition of cell growth and induction of apoptosis-associated molecules were evaluated <it>in vitro</it>. In addition, the <it>in vivo </it>effect of TS siRNA on tumor progression was assessed using a xenograft model.</p> <p>Results</p> <p>Our results demonstrated that ACC3 cells showed significantly higher TS expression than non-cancer cell lines and the induction of TS siRNA led to inhibition of cell proliferation. The effect was associated with an increase in p53, p21, and active caspase-3 and S-phase accumulation. We also found up-regulation of spermidine/spermine N1-acetyltransferase (SSAT), a polyamine metabolic enzyme. Furthermore, treatment with TS siRNA delivered by atelocollagen showed a significant cytostatic effect through the induction of apoptosis in a xenograft model.</p> <p>Conclusion</p> <p>TS may be an important therapeutic target and siRNA targeting TS may be of potential therapeutic value in ACC.</p

    Post tracheostomy and post intubation tracheal stenosis: Report of 31 cases and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Severe post tracheostomy (PT) and post intubation (PI) tracheal stenosis is an uncommon clinical entity that often requires interventional bronchoscopy before surgery is considered. We present our experience with severe PI and PT stenosis in regards to patient characteristics, possible risk factors, and therapy.</p> <p>Methods</p> <p>We conducted a retrospective chart review of 31 patients with PI and PT stenosis treated at Lahey Clinic over the past 8 years. Demographic characteristics, body mass index, co-morbidities, stenosis type and site, procedures performed and local treatments applied were recorded.</p> <p>Results</p> <p>The most common profile of a patient with tracheal stenosis in our series was a female (75%), obese (66%) patient with a history of diabetes mellitus (35.4%), hypertension (51.6%), and cardiovascular disease (45.1%), who was a current smoker (38.7%). Eleven patients (PI group) had only oro-tracheal intubation (5.2 days of intubation) and developed web-like stenosis at the cuff site. Twenty patients (PT group) had undergone tracheostomy (54.5 days of intubation) and in 17 (85%) of them the stenosis appeared around the tracheal stoma. There was an average of 2.4 procedures performed per patient. Rigid bronchoscopy with Nd:YAG laser and dilatation (mechanical or balloon) were the preferred methods used. Only 1(3.2%) patient was sent to surgery for re-stenosis after multiple interventional bronchoscopy treatments.</p> <p>Conclusion</p> <p>We have identified putative risk factors for the development of PI and PT stenosis. Differences in lesions characteristics and stenosis site were noted in our two patient groups. All patients underwent interventional bronchoscopy procedures as the first-line, and frequently the only treatment approach.</p

    Mutant polycystin-2 induces proliferation in primary rat tubular epithelial cells in a STAT-1/p21-independent fashion accompanied instead by alterations in expression of p57KIP2 and Cdk2

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the formation of multiple fluid-filled cysts that destroy the kidney architecture resulting in end-stage renal failure. Mutations in genes <it>PKD1 </it>and <it>PKD2 </it>account for nearly all cases of ADPKD. Increased cell proliferation is one of the key features of the disease. Several studies indicated that polycystin-1 regulates cellular proliferation through various signaling pathways, but little is known about the role played by polycystin-2, the product of <it>PKD2</it>. Recently, it was reported that as with polycystin-1, polycystin-2 can act as a negative regulator of cell growth by modulating the levels of the cyclin-dependent kinase inhibitor, p21 and the activity of the cyclin-dependent kinase 2, Cdk2.</p> <p>Methods</p> <p>Here we utilized different kidney cell-lines expressing wild-type and mutant <it>PKD2 </it>as well as primary tubular epithelial cells isolated from a PKD transgenic rat to further explore the contribution of the p21/Cdk2 pathway in ADPKD proliferation.</p> <p>Results</p> <p>Surprisingly, over-expression of wild-type <it>PKD2 </it>in renal cell lines failed to inactivate Cdk2 and consequently had no effect on cell proliferation. On the other hand, expression of mutated <it>PKD2 </it>augmented proliferation only in the primary tubular epithelial cells of a rat model but this was independent of the STAT-1/p21 pathway. On the contrary, multiple approaches revealed unequivocally that expression of the cyclin-dependent kinase inhibitor, p57<sup>KIP2</sup>, is downregulated, while p21 remains unchanged. This p57 reduction is accompanied by an increase in Cdk2 levels.</p> <p>Conclusion</p> <p>Our results indicate the probable involvement of p57<sup>KIP2 </sup>on epithelial cell proliferation in ADPKD implicating a new mechanism for mutant polycystin-2 induced proliferation. Most importantly, contrary to previous studies, abnormal proliferation in cells expressing mutant polycystin-2 appears to be independent of STAT-1/p21.</p

    Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue viruses (DENV) are one of the most important viral diseases in the world with approximately 100 million infections and 200,000 deaths each year. The current lack of an approved tetravalent vaccine and ineffective insecticide control measures warrant a search for alternatives to effectively combat DENV. The <it>trans</it>-splicing variant of the <it>Tetrahymena thermophila </it>group I intron catalytic RNA, or ribozyme, is a powerful tool for post-transcriptional RNA modification. The nature of the ribozyme and the predictability with which it can be directed makes it a powerful tool for modifying RNA in nearly any cell type without the need for genome-altering gene therapy techniques or dependence on native cofactors.</p> <p>Results</p> <p>Several anti-DENV Group I <it>trans</it>-splicing introns (αDENV-GrpIs) were designed and tested for their ability to target DENV-2 NGC genomes <it>in situ</it>. We have successfully targeted two different uracil bases on the positive sense genomic strand within the highly conserved 5'-3' cyclization sequence (CS) region common to all serotypes of DENV with our αDENV-GrpIs. Our ribozymes have demonstrated ability to specifically <it>trans</it>-splice a new RNA sequence downstream of the targeted site <it>in vitro </it>and in transfected insect cells as analyzed by firefly luciferase and RT-PCR assays. The effectiveness of these αDENV-GrpIs to target infecting DENV genomes is also validated in transfected or transformed Aedes mosquito cell lines upon infection with unattenuated DENV-2 NGC.</p> <p>Conclusions</p> <p>Analysis shows that our αDENV-GrpIs have the ability to effectively <it>trans</it>-splice the DENV genome <it>in situ</it>. Notably, these results show that the αDENV-GrpI 9v1, designed to be active against all forms of Dengue virus, effectively targeted the DENV-2 NGC genome in a sequence specific manner. These novel αDENV-GrpI introns provide a striking alternative to other RNA based approaches for the transgenic suppression of DENV in transformed mosquito cells and tissues.</p

    Position paper: The potential role of optical biopsy in the study and diagnosis of environmental enteric dysfunction

    Get PDF
    Environmental enteric dysfunction (EED) is a disease of the small intestine affecting children and adults in low and middle income countries. Arising as a consequence of repeated infections, gut inflammation results in impaired intestinal absorptive and barrier function, leading to poor nutrient uptake and ultimately to stunting and other developmental limitations. Progress towards new biomarkers and interventions for EED is hampered by the practical and ethical difficulties of cross-validation with the gold standard of biopsy and histology. Optical biopsy techniques — which can provide minimally invasive or noninvasive alternatives to biopsy — could offer other routes to validation and could potentially be used as point-of-care tests among the general population. This Consensus Statement identifies and reviews the most promising candidate optical biopsy technologies for applications in EED, critically assesses them against criteria identified for successful deployment in developing world settings, and proposes further lines of enquiry. Importantly, many of the techniques discussed could also be adapted to monitor the impaired intestinal barrier in other settings such as IBD, autoimmune enteropathies, coeliac disease, graft-versus-host disease, small intestinal transplantation or critical care
    corecore