392 research outputs found
Simple Pricing Schemes for the Cloud
The problem of pricing the cloud has attracted much recent attention due to
the widespread use of cloud computing and cloud services. From a theoretical
perspective, several mechanisms that provide strong efficiency or fairness
guarantees and desirable incentive properties have been designed. However,
these mechanisms often rely on a rigid model, with several parameters needing
to be precisely known in order for the guarantees to hold. In this paper, we
consider a stochastic model and show that it is possible to obtain good welfare
and revenue guarantees with simple mechanisms that do not make use of the
information on some of these parameters. In particular, we prove that a
mechanism that sets the same price per time step for jobs of any length
achieves at least 50% of the welfare and revenue obtained by a mechanism that
can set different prices for jobs of different lengths, and the ratio can be
improved if we have more specific knowledge of some parameters. Similarly, a
mechanism that sets the same price for all servers even though the servers may
receive different kinds of jobs can provide a reasonable welfare and revenue
approximation compared to a mechanism that is allowed to set different prices
for different servers.Comment: To appear in the 13th Conference on Web and Internet Economics
(WINE), 2017. A preliminary version was presented at the 12th Workshop on the
Economics of Networks, Systems and Computation (NetEcon), 201
Superradiant light scattering and grating formation in cold atomic vapours
A semi-classical theory of coherent light scattering from an elongated sample
of cold atoms exposed to an off-resonant laser beam is presented. The model,
which is a direct extension of that of the collective atomic recoil laser
(CARL), describes the emission of two superradiant pulses along the sample's
major axis simultaneous with the formation of a bidimensional atomic grating
inside the sample. It provides a simple physical picture of the recent
observation of collective light scattering from a Bose-Einstein condensate [S.
Inouye et al., Science N.285, p. 571 (1999)]. In addition, the model provides
an analytical description of the temporal evolution of the scattered light
intensity which shows good quantitative agreement with the experimental results
of Inouye et al.Comment: submitted to Optics Communications, LaTex version, 2 postscript
figure
The Role of Nonequilibrium Dynamical Screening in Carrier Thermalization
We investigate the role played by nonequilibrium dynamical screening in the
thermalization of carriers in a simplified two-component two-band model of a
semiconductor. The main feature of our approach is the theoretically sound
treatment of collisions. We abandon Fermi's Golden rule in favor of a
nonequilibrium field theoretic formalism as the former is applicable only in
the long-time regime. We also introduce the concept of nonequilibrium dynamical
screening. The dephasing of excitonic quantum beats as a result of
carrier-carrier scattering is brought out. At low densities it is found that
the dephasing times due to carrier-carrier scattering is in picoseconds and not
femtoseconds, in agreement with experiments. The polarization dephasing rates
are computed as a function of the excited carrier density and it is found that
the dephasing rate for carrier-carrier scattering is proportional to the
carrier density at ultralow densities. The scaling relation is sublinear at
higher densities, which enables a comparison with experiment.Comment: Revised version with additional refs. 12 pages, figs. available upon
request; Submitted to Phys. Rev.
Signal Transduction Pathways in the Pentameric Ligand-Gated Ion Channels
The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the β1-β2 loop or through pre-TM1. The β1-β2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs. © 2013 Mowrey et al
Integrated circuits and molecular components for stress and feeding: implications for eating disorders: Integrated circuits and molecular components
Eating disorders are complex brain disorders that afflict millions of individuals worldwide. The etiology of these diseases is not fully understood, but a growing body of literature suggests that stress and anxiety may play a critical role in their development. As our understanding of the genetic and environmental factors that contribute to disease in clinical populations like anorexia nervosa, bulimia nervosa and binge eating disorder continue to grow, neuroscientists are using animal models to understand the neurobiology of stress and feeding. We hypothesize that eating disorder clinical phenotypes may result from stress-induced maladaptive alterations in neural circuits that regulate feeding, and that these circuits can be neurochemically isolated using animal model of eating disorders
Interaction potential between dynamic dipoles: polarized excitons in strong magnetic fields
The interaction potential of a two-dimensional system of excitons with
spatially separated electron-hole layers is considered in the strong magnetic
field limit. The excitons are assumed to have free dynamics in the -
plane, while being constrained or `polarized' in the direction. The model
simulates semiconductor double layer systems under strong magnetic field normal
to the layers. The {\em residual} interaction between excitons exhibits
interesting features, arising from the coupling of the center-of-mass and
internal degrees of freedom of the exciton in the magnetic field. This coupling
induces a dynamical dipole moment proportional to the center-of-mass magnetic
moment of the exciton. We show the explicit dependence of the inter-exciton
potential matrix elements, and discuss the underlying physics. The unusual
features of the interaction potential would be reflected in the collective
response and non-equilibrium properties of such system.Comment: REVTEX - 11 pages - 1 fi
Dephasing times in quantum dots due to elastic LO phonon-carrier collisions
Interpretation of experiments on quantum dot (QD) lasers presents a
challenge: the phonon bottleneck, which should strongly suppress relaxation and
dephasing of the discrete energy states, often seems to be inoperative. We
suggest and develop a theory for an intrinsic mechanism for dephasing in QD's:
second-order elastic interaction between quantum dot charge carriers and
LO-phonons. The calculated dephasing times are of the order of 200 fs at room
temperature, consistent with experiments. The phonon bottleneck thus does not
prevent significant room temperature dephasing.Comment: 4 pages, 1 figure, accepted for Phys. Rev. Let
Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs
The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data
Steep anomalous dispersion in coherently prepared Rb vapor
Steep dispersion of opposite signs in driven degenerate two-level atomic
transitions have been predicted and observed on the D2 line of 87Rb in an
optically thin vapor cell. The intensity dependence of the anomalous dispersion
has been studied. The maximum observed value of anomalous dispersion [dn/dnu ~=
-6x10^{-11}Hz^{-1}] corresponds to anegative group velocity V_g ~= -c/23000.Comment: 4 pages, 4 figure
- …