16 research outputs found

    Evaluation of Parking Demand and Future Requirement in the Urban Area

    Get PDF
    Whatever vehicle is traveling, it needs to stop in order to arrive road users their different goals. In most universities, parking becomes an important campus resource, for being as a place to come frequently and to spend long period. Now days parking problems increase with repaid growth of car ownership. So traffic and parking impact can be consider as a major source of contention within any community and can raise additional costs for universities, as well as urban areas facilities. The study aims to evaluate the current parking situation on the university campus in terms of the available supply and required demand of parking spaces in order to recommend future parking spaces need for the next five years. Data has had been collected according to field traffic and engineering survey, Videography method was used for this purpose. Inventories, Interviews and questionnaires included. Data analysis conducted with the aided of AASHTO and equation methods. The study concluded future parking required is 140 vehicle- spaces for the year 2026, according to population rate of growth also illegal parking leads to interference with the movements of pedestrians and their crossing, as well as reducing the capacity of the roads in the study area. Doi: 10.28991/cej-2021-03091767 Full Text: PD

    Type S Non Ribosomal Peptide Synthetases for the rapid generation of tailor-made peptide libraries

    No full text
    Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new-to-nature natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programms. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPS in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mgL-1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly.Competing Interest StatementThe authors have declared no competing interest

    A combined numerical and visualization tool for utility targeting and heat exchanger network retrofitting

    No full text
    In synthesizing optimal heat recovery networks, Composite Curve (CC) plots and Problem Table Algorithms (PTAs) have been the most popular tools for determining the minimum energy targets, whereas Grid Diagrams (GDs) have been widely utilized for heat exchanger network (HEN) design. However, CCs are cumbersome to construct. Additionally, PTAs offer numerical advantages but little insight into the impact of process streams on pinch points and heat recovery bottlenecks. Meanwhile, GDs are separately needed to diagnose HEN pinch rule violations. This paper introduces the Grid Diagram Table (GDT) as an alternative tool for determining pinch points and utility targets as well as for the retrofitting of HEN. The GDT combines numerical and visualization advantages into a single diagram. The GDT, which is represented according to a stream interval temperature scale and is developed based on fundamental Composite Curve geometry, can provide vital information during the identification of the pinch points and energy targets of a process as well as enhance the intuitive visualization of pinch rule violations that are especially useful for the rapid and effective debottlenecking of an existing heat recovery system to maximize its thermal energy efficiency. This paper also demonstrates the application of the GDT in addressing a single-pinch problem, multiple-pinch problem and an industrial case study involving a palm oil refinery

    Type S Non-Ribosomal Peptide Synthetases for the Rapid Generation of Tailormade Peptide Libraries

    No full text
    Bacterial natural products in general, and non-ribosomally synthesized peptides in particular, are structurally diverse and provide us with a broad range of pharmaceutically relevant bioactivities. Yet, traditional natural product research suffers from rediscovering the same scaffolds and has been stigmatized as inefficient, time-, labour- and cost-intensive. Combinatorial chemistry, on the other hand, can produce new molecules in greater numbers, cheaper and in less time than traditional natural product discovery, but also fails to meet current medical needs due to the limited biologically relevant chemical space that can be addressed. Consequently, methods for the high throughput generation of new natural products would offer a new approach to identifying novel bioactive chemical entities for the hit to lead phase of drug discovery programs. As a follow-up to our previously published proof-of-principle study on generating bipartite type S non-ribosomal peptide synthetases (NRPSs), we now envisaged the de novo generation of non-ribosomal peptides (NRPs) on an unreached scale. Using synthetic zippers, we split NRPSs in up to three subunits and rapidly generated different bi- and tripartite NRPS libraries to produce 49 peptides, peptide derivatives, and de novo peptides at good titres up to 145 mg L-1. A further advantage of type S NRPSs not only is the possibility to easily expand the created libraries by re-using previously created type S NRPS, but that functions of individual domains as well as domain-domain interactions can be studied and assigned rapidly
    corecore