30 research outputs found

    Stochastic flowering phenology in Dactylis Glomerata populations described by Markov chain modelling

    Get PDF
    Understanding the relationship between flowering patterns and pollen dispersal is important in climate change modelling, pollen forecasting, forestry and agriculture. Enhanced understanding of this connection can be gained through detailed spatial and temporal flowering observations on a population level, combined with modelling simulating the dynamics. Species with large distribution ranges, long flowering seasons, high pollen production and naturally large populations can be used to illustrate these dynamics. Revealing and simulating species-specific demographic and stochastic elements in the flowering process will likely be important in determining when pollen release is likely to happen in flowering plants. Spatial and temporal dynamics of eight populations of Dactylis glomerata were collected over the course of two years to determine high-resolution demographic elements. Stochastic elements were accounted for using Markov Chain approaches in order to evaluate tiller-specific contribution to overall population dynamics. Tiller-specific developmental dynamics were evaluated using three different RV matrix correlation coefficients. We found that the demographic patterns in population development were the same for all populations with key phenological events differing only by a few days over the course of the seasons. Many tillers transitioned very quickly from non-flowering to full flowering, a process that can be replicated with Markov Chain modelling. Our novel approach demonstrates the identification and quantification of stochastic elements in the flowering process of D. glomerata, an element likely to be found in many flowering plants. The stochastic modelling approach can be used to develop detailed pollen release models for Dactylis, other grass species and probably other flowering plants

    Terrestrische und semiterrestrische Ökosysteme

    Get PDF

    The mass distribution of coarse particulate organic matter exported from an Alpine headwater stream

    No full text
    Coarse particulate organic matter (CPOM) particles span sizes from 1 mm, with a dry mass less than 1 mg, to large logs and entire trees, which can have a dry mass of several hundred kilograms. Pieces of different size and mass play different roles in stream environments, from being the prime source of energy in stream ecosystems to macroscopically determining channel morphology and local hydraulics. We show that a single scaling exponent can describe the mass distribution of CPOM heavier than 0.1 g transported in the Erlenbach, a steep mountain stream in the Swiss pre-Alps. This exponent takes an average value of −1.8, is independent of discharge and valid for particle masses spanning almost seven orders of magnitude. Similarly, the mass distribution of in-stream large woody debris (LWD) in several Swiss streams can be described by power law scaling distributions, with exponents varying between −1.8 and −2.0, if all in-stream LWD is considered, and between −1.3 and −1.8 for material locked in log jams. We found similar values for in-stream and transported material in the literature. We had expected that scaling exponents are determined by stream type, vegetation, climate, substrate properties, and the connectivity between channels and hillslopes. However, none of the descriptor variables tested here, including drainage area, channel bed slope and the percentage of forested area, show a strong control on exponent value. Together with a rating curve of CPOM transport rates with discharge, the scaling exponents can be used in the design of measuring strategies and in natural hazard mitigation
    corecore