24,020 research outputs found
LTA structures and materials technology
The state-of-the-art concerning structures and materials technology is reviewed. It is shown that many present materials developments resulting from balloon and aircraft research programs can be applied to new concepts in LTA vehicles. Both buoyant and semi-buoyant vehicles utilize similar approaches to solving structural problems and could involve pressurized non-rigid and unpressurized rigid structures. System designs common to both and vital to structural integrity include much of the past technology as well. Further research is needed in determination of structural loads, especially in future design concepts
Current developments lighter than air systems
Lighter than air aircraft (LTA) developments and research in the United States and other countries are reviewed. The emphasis in the U.S. is on VTOL airships capable of heavy lift, and on long endurance types for coastal maritime patrol. Design concepts include hybrids which combine heavier than air and LTA components and characteristics. Research programs are concentrated on aerodynamics, flight dynamics, and control of hybrid types
Analysis of thin-film structures with nuclear backscattering and x-ray diffraction
Backscattering of MeV ^(4)He ions and Seemann-Bohlin x-ray diffraction techniques have been used to study silicide formation on Si and SiO_2 covered with evaporated metal films. Backscattering techniques provide information on the composition of thin-film structures as a function of depth. The glancing-angle x-ray technique provides identification of phases and structural information. Examples are given of V on Si and on SiO_2 to illustrate the major features of these analysis techniques. We also give a general review of recent studies of silicide formation
Functional imaging reveals working memory and attention interact to produce the attentional blink
Copyright @ 2012 Massachusetts Institute of Technology PressIf two centrally presented visual stimuli occur within approximately half a second of each other, the second target often fails to be reported correctly. This effect, called the attentional blink (AB; Raymond, J. E., Shapiro, K. L., & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: An attentional blink? Journal of Experimental Psychology, Human Perception and Performance, 18, 849-860, 1992], has been attributed to a resource "bottleneck," likely arising as a failure of attention during encoding into or retrieval from visual working memory (WM). Here we present participants with a hybrid WM-AB study while they undergo fMRI to provide insight into the neural underpinnings of this bottleneck. Consistent with a WM-based bottleneck account, fronto-parietal brain areas exhibited a WM load-dependent modulation of neural responses during the AB task. These results are consistent with the view that WM and attention share a capacity-limited resource and provide insight into the neural structures that underlie resource allocation in tasks requiring joint use of WM and attention.This research was supported by a project grant (071944) from the Wellcome Trust to Kimron Shapiro
Constraints on the Formation of the Planet Around HD188753A
The claimed discovery of a Jupiter-mass planet in the close triple star
system HD 188753 poses a problem for planet formation theory. A circumstellar
disk around the planet's parent star would be truncated close to the star,
leaving little material available for planet formation. In this paper, we
attempt to model a protoplanetary disk around HD 188753A using a fairly simple
alpha-disk model, exploring a range of parameters constrained by observations
of T Tauri-type stars. The disk is truncated to within 1.5 to 2.7 AU, depending
on model parameters. We find that the in situ formation of the planet around HD
188753A is implausible.Comment: Accepted version, to appear in ApJ. 23 pages, 5 figures (3 in color
Nuclei embedded in an electron gas
The properties of nuclei embedded in an electron gas are studied within the
relativistic mean-field approach. These studies are relevant for nuclear
properties in astrophysical environments such as neutron-star crusts and
supernova explosions. The electron gas is treated as a constant background in
the Wigner-Seitz cell approximation. We investigate the stability of nuclei
with respect to alpha and beta decay. Furthermore, the influence of the
electronic background on spontaneous fission of heavy and superheavy nuclei is
analyzed. We find that the presence of the electrons leads to stabilizing
effects for both decay and spontaneous fission for high electron
densities. Furthermore, the screening effect shifts the proton dripline to more
proton-rich nuclei, and the stability line with respect to beta decay is
shifted to more neutron-rich nuclei. Implications for the creation and survival
of very heavy nuclear systems are discussed.Comment: 35 pages, latex+ep
1995, Spatial and temporal variability of late Neogene equatorial Pacific carbonate
High-resolution, continuous records of GRAPE wet bulk density (a carbonate proxy) from Ocean Drilling Program Leg 138 provide one the opportunity for a detailed study of eastern equatorial Pacific Ocean carbonate sedimentation during the last 6 m.y. The transect of sites drilled spans both latitude and longitude in the eastern equatorial Pacific from 90° to 110°W and from 5°S to 10°N. Two modes of variability are resolved through the use of Empirical Orthogonal Function (EOF) analysis. In the presence of large tectonic and climatic boundary condition changes over the last 6 m.y., the dominant mode of spatial variability in carbonate sedimentation is remarkably constant. The first mode accounts for over 50% of the variance in the data, and is consistent with forcing by equatorial divergence. This mode characterizes both carbonate concentration and carbonate mass accumulation rate time series. Variability in the first mode is highly coherent with insolation, indicating a strong linear relationship between equatorial Pacific car bonate sedimentation and Milankovitch variability. Frequency domain analysis indicates that the coupling to equatorial divergence in carbonate sedimentation is strongest in the precession band (19-23 k.y.) and weakest though present at lower frequencies. The second mode of variability has a consistent spatial pattern of east-west asymmetry over the past 4 m.y. only; prior to 4 Ma, a different mode of spatial variability may have been present, possibly suggesting influence by closure of the Isthmus of Panama or other tectonic changes. The second mode of variability may indicate influence by CaCO3 dissolution. The second mode of variability is not highly coherent with insolation. Comparison of the modes of carbonate variability to a 4 m.y. record of benthic δ 1 8 indicates that although overall correlation between carbonate and δ 1 8 is low, both modes of variability in carbonate sedimentation are coherent with δ 1 8 changes at some frequencies. The first mode of carbonate variability is coherent with Sites 846/849 δ 1 8 at the dominant insolation periods, and the second mode is coherent at 100 k.y. during the last 2 m.y. The coherence between carbonate sedimentation and δ 1 8 in both EOF modes suggests that multiple uncorrelated modes of variability operated within the climate system during the late Neogene
Identification of the dominant diffusing species in silicide formation
Implanted noble gas atoms of Xe have been used as diffusion markers in the growth study of three silicides: Ni2Si, VSi2, and TiSi2. Backscattering of MeV He has been used to determine the displacement of the markers. We found that while Si atoms predominate the diffusion in VSi2 and TiSi2, Ni atoms are the faster moving species in Ni2Si
Polarization-selective excitation of N-V centers in diamond
The nitrogen-vacancy (N-V) center in diamond is promising as an electron spin
qubit due to its long-lived coherence and optical addressability. The ground
state is a spin triplet with two levels () degenerate at zero
magnetic field. Polarization-selective microwave excitation is an attractive
method to address the spin transitions independently, since this allows
operation down to zero magnetic field. Using a resonator designed to produce
circularly polarized microwaves, we have investigated the polarization
selection rules of the N-V center. We first apply this technique to N-V
ensembles in [100] and [111]-oriented samples. Next, we demonstrate an imaging
technique, based on optical polarization dependence, that allows rapid
identification of the orientations of many single N-V centers. Finally, we test
the microwave polarization selection rules of individual N-V centers of known
orientation
- âŚ