4,566 research outputs found

    Dutch listeners' use of suprasegmental cues to English stress

    Get PDF
    Dutch listeners outperform native listeners in identifying syllable stress in English. This is because lexical stress is more useful in recognition of spoken words of Dutch than of English, so that Dutch listeners pay greater attention to stress in general. We examined Dutch listeners’ use of the acoustic correlates of English stress. Primary- and secondary-stressed syllables differ significantly on acoustic measures, and some differences, in F0 especially, correlate with data of earlier listening experiments. The correlations found in the Dutch responses were not paralleled in data from native listeners. Thus the acoustic cues which distinguish English primary versus secondary stress are better exploited by Dutch than by native listeners

    A Simulation of the LISA Data Stream from Galactic White Dwarf Binaries

    Full text link
    Gravitational radiation from the galactic population of white dwarf binaries is expected to produce a background signal in the LISA frequency band. At frequencies below 1 mHz, this signal is expected to be confusion-limited and has been approximated as gaussian noise. At frequencies above about 5 mHz, the signal will consist of separable individual sources. We have produced a simulation of the LISA data stream from a population of 90k galactic binaries in the frequency range between 1 - 5 mHz. This signal is compared with the simulated signal from globular cluster populations of binaries. Notable features of the simulation as well as potential data analysis schemes for extracting information are presented.Comment: Submitted to QC

    LISA Response Function and Parameter Estimation

    Full text link
    We investigate the response function of LISA and consider the adequacy of its commonly used approximation in the high-frequency range of the observational band. We concentrate on monochromatic binary systems, such as white dwarf binaries. We find that above a few mHz the approxmation starts becoming increasingly inaccurate. The transfer function introduces additional amplitude and phase modulations in the measured signal that influence parameter estmation and, if not properly accounted for, lead to losses of signal-to-noise ratio.Comment: 4 pages, 2 figures, amaldi 5 conference proceeding

    Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

    Get PDF
    Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2--3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.Comment: matches PRD accepted version (expanded description of the cosmological parameter space + minor changes

    Detecting the Cosmic Gravitational Wave Background with the Big Bang Observer

    Full text link
    The detection of the Cosmic Microwave Background Radiation (CMB) was one of the most important cosmological discoveries of the last century. With the development of interferometric gravitational wave detectors, we may be in a position to detect the gravitational equivalent of the CMB in this century. The Cosmic Gravitational Background (CGB) is likely to be isotropic and stochastic, making it difficult to distinguish from instrument noise. The contribution from the CGB can be isolated by cross-correlating the signals from two or more independent detectors. Here we extend previous studies that considered the cross-correlation of two Michelson channels by calculating the optimal signal to noise ratio that can be achieved by combining the full set of interferometry variables that are available with a six link triangular interferometer. In contrast to the two channel case, we find that the relative orientation of a pair of coplanar detectors does not affect the signal to noise ratio. We apply our results to the detector design described in the Big Bang Observer (BBO) mission concept study and find that BBO could detect a background with Ωgw>2.2×1017\Omega_{gw} > 2.2 \times 10^{-17}.Comment: 15 pages, 12 Figure

    LISA data analysis I: Doppler demodulation

    Full text link
    The orbital motion of the Laser Interferometer Space Antenna (LISA) produces amplitude, phase and frequency modulation of a gravitational wave signal. The modulations have the effect of spreading a monochromatic gravitational wave signal across a range of frequencies. The modulations encode useful information about the source location and orientation, but they also have the deleterious affect of spreading a signal across a wide bandwidth, thereby reducing the strength of the signal relative to the instrument noise. We describe a simple method for removing the dominant, Doppler, component of the signal modulation. The demodulation reassembles the power from a monochromatic source into a narrow spike, and provides a quick way to determine the sky locations and frequencies of the brightest gravitational wave sources.Comment: 5 pages, 7 figures. References and new comments adde

    Molecular Clock on a Neutral Network

    Full text link
    The number of fixed mutations accumulated in an evolving population often displays a variance that is significantly larger than the mean (the overdispersed molecular clock). By examining a generic evolutionary process on a neutral network of high-fitness genotypes, we establish a formalism for computing all cumulants of the full probability distribution of accumulated mutations in terms of graph properties of the neutral network, and use the formalism to prove overdispersion of the molecular clock. We further show that significant overdispersion arises naturally in evolution when the neutral network is highly sparse, exhibits large global fluctuations in neutrality, and small local fluctuations in neutrality. The results are also relevant for elucidating the topological structure of a neutral network from empirical measurements of the substitution process.Comment: 10 page

    A How-To for the Mock LISA Data Challenges

    Get PDF
    The LISA International Science Team Working Group on Data Analysis (LIST-WG1B) is sponsoring several rounds of mock data challenges, with the purpose of fostering development of LISA data-analysis capabilities, and of demonstrating technical readiness for the maximum science exploitation of the LISA data. The first round of challenge data sets were released at this Symposium. We describe the models and conventions (for LISA and for gravitational-wave sources) used to prepare the data sets, the file format used to encode them, and the tools and resources available to support challenge participants.Comment: 10 pages, 1 figure, in Proceedings of the Sixth International LISA Symposium (AIP, 2006

    A photoionization study of OH and OD from 680A to 950A: An analysis of the Rydberg series

    Get PDF
    The photoionization spectra of OH(+) and OD(+) have been reported from 680 to 950 A (18.23 to 13.05 eV) at a wavelength resolution of 0.07 A. Through interpretation of both spectra, the Rydberg series and their higher vibrational members have been reported for three of the excited ionic states, a(sup 1)Delta, A(sup 3)Pi(i), and b(sup 1) Sigma(sup +). A vibrational progression has also been observed in both OH(+) and OD(+) which is apparently related to a fourth excited ionic state, c(sup 1)Pi. Finally, the dissociative ionization limits, corrected to 0 K,for H2O AND D2O have been measured to be 18.11+/-0.01 and 18.21+/-0.01 eV, respectively, and shown to be in good agreement with previously reported results
    corecore