2,263 research outputs found

    Weighted-density approximation for general nonuniform fluid mixtures

    Get PDF
    In order to construct a general density-functional theory for nonuniform fluid mixtures, we propose an extension to multicomponent systems of the weighted-density approximation (WDA) of Curtin and Ashcroft [Phys. Rev. A 32, 2909 (1985)]. This extension corrects a deficiency in a similar extension proposed earlier by Denton and Ashcroft [Phys. Rev. A 42, 7312 (1990)], in that that functional cannot be applied to the multi-component nonuniform fluid systems with spatially varying composition, such as solid-fluid interfaces. As a test of the accuracy of our new functional, we apply it to the calculation of the freezing phase diagram of a binary hard-sphere fluid, and compare the results to simulation and the Denton-Ashcroft extension.Comment: 4 pages, 4 figures, to appear in Phys. Rev. E as Brief Repor

    Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro

    Get PDF
    The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage. On the basis of these data, PARP inhibitors may be potentially useful in combination with topoisomerase I inhibitor anticancer chemotherapy. Β© 2001 Cancer Research Campaign http://www.bjcancer.co

    Potentiation of anti-cancer agent cytotoxicity by the potent poly(ADP-ribose) polymerase inhibitors NU1025 and NU1064.

    Get PDF
    The ability of the potent poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025 (8-hydroxy-2-methyl-quinazolin-4-[3H]one) to potentiate the cytotoxicity of a panel of mechanistically diverse anti-cancer agents was evaluated in L1210 cells. NU1025 enhanced the cytotoxicity of the DNA-methylating agent MTIC, gamma-irradiation and bleomycin 3.5-, 1.4- and 2-fold respectively. The cytotoxicities of the thymidylate synthase inhibitor, nolatrexed, and the cytotoxic nucleoside, gemcitabine, were not increased. Potentiation of MTIC cytotoxicity by a delayed exposure to NU1025 was equally effective as by a simultaneous exposure to NU1025, indicating that the effects of NU1025 were mediated by an inhibition of the cellular recovery. The recovery from potentially lethal gamma-irradiation damage cytotoxicity in plateau-phase cells was also inhibited by NU1025. Investigation of DNA strand breakage and repair in gamma-irradiated cells by alkaline elution demonstrated that NU1025 caused a marked retardation of DNA repair. A structurally different PARP inhibitor, NU1064 (2-methylbenzimidazole-4-carboxamide), also potentiated the cytotoxicity of MTIC, to a similar extent to NU1025. NU1064 potentiated a sublethal concentration of a DNA methylating agent in a concentration-dependent manner. Collectively, these data suggest that the most suitable cytotoxic agents for use in combination with PARP inhibitors are methylating agents, bleomycin and ionizing radiation, but not anti-metabolites

    Dipyridamole potentiates the in vitro activity of MTA (LY231514) by inhibition of thymidine transport

    Get PDF
    The novel pyrrolopyrimidine-based antifolate LY231514 (MTA), inhibits multiple folate-requiring enzymes including thymidylate synthase, glycinamide ribonucleotide formyltransferase and dihydrofolate reductase. Both thymidine and hypoxanthine are required to reverse MTA growth inhibition in leukaemia and colon cancer cells. Prevention of MTA growth inhibition by thymidine and/or hypoxanthine was investigated in two human lung (A549, COR L23) and two breast (MCF7, T47D) tumour cell lines, and the effect of the nucleoside/base transport inhibitor dipyridamole (DP) on thymidine and hypoxanthine rescue defined. MTA IC50values (continuous exposure three population doublings) were: A549–640 n M, COR L23–28 n M, MCF7–52 n M and T47D–46 n M. Thymidine (1 ΞΌM) completely prevented growth inhibition at the MTA IC50in all cell lines. At 10 Γ— IC50, growth inhibition was only partially reversed by thymidine (≀ 10 ΞΌM); both thymidine and hypoxanthine (30 ΞΌM) being required for complete reversal, reflecting the multi-targeted nature of MTA. Growth inhibition by MTA was not affected by hypoxanthine alone. A non-toxic concentration (1 ΞΌM) of DP prevented thymidine/hypoxanthine rescue of MTA indicating that DP may potentiate MTA activity by preventing nucleoside and/or base salvage. Thymidine transport was inhibited by β‰₯ 89% by 1 ΞΌM DP in all cell lines, whereas hypoxanthine transport was inhibited only in A549 and MCF7 cells. Therefore, prevention of end-product reversal of MTA-induced growth inhibition by DP can be explained by inhibition of thymidine transport alone. Β© 2000 Cancer Research Campaig

    Cellular glutathione as a determinant of the sensitivity of colorectal tumour cell-lines to ZD2767 antibody-directed enzyme prodrug therapy (ADEPT)

    Get PDF
    ZD2767P, a nitrogen mustard glutamate prodrug, is currently being evaluated in Phase 1 clinical trials of antibody directed enzyme prodrug therapy (ADEPT). There was no significant relationship between basal glutathione (GSH) concentration and sensitivity to ZD2767P + carboxpeptidase G2 (CPG2) in colorectal tumour cell-lines. Depletion of intracellular GSH using buthionine sulfoximine (BSO) resulted in only a modest potentiation of ZD2767P + CPG2 activity and hence BSO is unlikely to markedly enhance the activity of this ADEPT treatment. Β© 2000 Cancer Research Campaig
    • …
    corecore