67 research outputs found

    Activation of Toll-Like Receptor 3 Impairs the Dengue Virus Serotype 2 Replication through Induction of IFN-β in Cultured Hepatoma Cells

    Get PDF
    Toll-like receptors (TLRs) play an important role in innate immunity against invading pathogens. Although TLR signaling has been indicated to protect cells from infection of several viruses, the role of TLRs in Dengue virus (DENV) replication is still unclear. In the present study, we examined the replication of DENV serotype 2 (DENV2) by challenging hepatoma cells HepG2 with different TLR ligands. Activation of TLR3 showed an antiviral effect, while pretreatment of other TLR ligands (including TLR1/2, TLR2/6, TLR4, TLR5 or TLR7/8) did not show a significant effect. TLR3 ligand poly(I∶C) treatment prior to viral infection or simultaneously, but not post-treatment, significantly down-regulated virus replication. Pretreatment with poly(I∶C) reduced viral mRNA expression and viral staining positive cells, accompanying an induction of the type I interferon (IFN-β) and type III IFN (IL-28A/B). Intriguingly, neutralization of IFN-β alone successfully restored the poly(I∶C)-inhibited replication of DENV2. The poly(I∶C)-mediated effects, including IFN induction and DENV2 suppression, were significantly reversed by IKK inhibitor, further suggesting that IFN-β is the dominant factor involved in the poly(I∶C) mediated antiviral effect. Our study presented the first evidence to show that activation of TLR3 is effective in blocking DENV2 replication via IFN-β, providing an experimental clue that poly(I∶C) may be a promising immunomodulatory agent against DENV infection and might be applicable for clinical prevention

    Liver Is Able to Activate Naïve CD8+ T Cells with Dysfunctional Anti-Viral Activity in the Murine System

    Get PDF
    The liver possesses distinct tolerogenic properties because of continuous exposure to bacterial constituents and nonpathogenic food antigen. The central immune mediators required for the generation of effective immune responses in the liver environment have not been fully elucidated. In this report, we demonstrate that the liver can indeed support effector CD8+ T cells during adenovirus infection when the T cells are primed in secondary lymphoid tissues. In contrast, when viral antigen is delivered predominantly to the liver via intravenous (IV) adenovirus infection, intrahepatic CD8+ T cells are significantly impaired in their ability to produce inflammatory cytokines and lyse target cells. Additionally, intrahepatic CD8+ T cells generated during IV adenovirus infection express elevated levels of PD-1. Notably, lower doses of adenovirus infection do not rescue the impaired effector function of intrahepatic CD8+ T cell responses. Instead, intrahepatic antigen recognition limits the generation of potent anti-viral responses at both priming and effector stages of the CD8+ T cell response and accounts for the dysfunctional CD8+ T cell response observed during IV adenovirus infection. These results also implicate that manipulation of antigen delivery will facilitate the design of improved vaccination strategies to persistent viral infection

    Identification of a Putative Network of Actin-Associated Cytoskeletal Proteins in Glomerular Podocytes Defined by Co-Purified mRNAs

    Get PDF
    The glomerular podocyte is a highly specialized and polarized kidney cell type that contains major processes and foot processes that extend from the cell body. Foot processes from adjacent podocytes form interdigitations with those of adjacent cells, thereby creating an essential intercellular junctional domain of the renal filtration barrier known as the slit diaphragm. Interesting parallels have been drawn between the slit diaphragm and other sites of cell-cell contact by polarized cells. Notably mutations in several genes encoding proteins localized to the foot processes can lead to proteinuria and kidney failure. Mutations in the Wilm's tumor gene (WT1) can also lead to kidney disease and one isoform of WT1, WT1(+KTS), has been proposed to regulate gene expression post-transcriptionally. We originally sought to identify mRNAs associated with WT1(+KTS) through an RNA immunoprecipitation and microarray approach, hypothesizing that the proteins encoded by these mRNAs might be important for podocyte morphology and function. We identified a subset of mRNAs that were remarkably enriched for transcripts encoding actin-binding proteins and other cytoskeletal proteins including several that are localized at or near the slit diaphragm. Interestingly, these mRNAs included those of α-actinin-4 and non-muscle myosin IIA that are mutated in genetic forms of kidney disease. However, isolation of the mRNAs occurred independently of the expression of WT1, suggesting that the identified mRNAs were serendipitously co-purified on the basis of co-association in a common subcellular fraction. Mass spectroscopy revealed that other components of the actin cytoskeleton co-purified with these mRNAs, namely actin, tubulin, and elongation factor 1α. We propose that these mRNAs encode a number of proteins that comprise a highly specialized protein interactome underlying the slit diaphragm. Collectively, these gene products and their interactions may prove to be important for the structural integrity of the actin cytoskeleton in podocytes as well as other polarized cell types

    Kupffer Cells Hasten Resolution of Liver Immunopathology in Mouse Models of Viral Hepatitis

    Get PDF
    Kupffer cells (KCs) are widely considered important contributors to liver injury during viral hepatitis due to their pro-inflammatory activity. Herein we utilized hepatitis B virus (HBV)-replication competent transgenic mice and wild-type mice infected with a hepatotropic adenovirus to demonstrate that KCs do not directly induce hepatocellular injury nor do they affect the pathogenic potential of virus-specific CD8 T cells. Instead, KCs limit the severity of liver immunopathology. Mechanistically, our results are most compatible with the hypothesis that KCs contain liver immunopathology by removing apoptotic hepatocytes in a manner largely dependent on scavenger receptors. Apoptotic hepatocytes not readily removed by KCs become secondarily necrotic and release high-mobility group box 1 (HMGB-1) protein, promoting organ infiltration by inflammatory cells, particularly neutrophils. Overall, these results indicate that KCs resolve rather than worsen liver immunopathology

    Plasma biomarkers of depressive symptoms in older adults

    Get PDF
    The pathophysiology of negative affect states in older adults is complex, and a host of central nervous system and peripheral systemic mechanisms may play primary or contributing roles. We conducted an unbiased analysis of 146 plasma analytes in a multiplex biochemical biomarker study in relation to number of depressive symptoms endorsed by 566 participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) at their baseline and 1-year assessments. Analytes that were most highly associated with depressive symptoms included hepatocyte growth factor, insulin polypeptides, pregnancy-associated plasma protein-A and vascular endothelial growth factor. Separate regression models assessed contributions of past history of psychiatric illness, antidepressant or other psychotropic medicine, apolipoprotein E genotype, body mass index, serum glucose and cerebrospinal fluid (CSF) τ and amyloid levels, and none of these values significantly attenuated the main effects of the candidate analyte levels for depressive symptoms score. Ensemble machine learning with Random Forests found good accuracy (∼80%) in classifying groups with and without depressive symptoms. These data begin to identify biochemical biomarkers of depressive symptoms in older adults that may be useful in investigations of pathophysiological mechanisms of depression in aging and neurodegenerative dementias and as targets of novel treatment approaches

    Toll-like receptor 4 signaling in liver injury and hepatic fibrogenesis

    Get PDF
    Toll-like receptors (TLRs) are a family of transmembrane pattern recognition receptors (PRR) that play a key role in innate and adaptive immunity by recognizing structural components unique to bacteria, fungi and viruses. TLR4 is the most studied of the TLRs, and its primary exogenous ligand is lipopolysaccharide, a component of Gram-negative bacterial walls. In the absence of exogenous microbes, endogenous ligands including damage-associated molecular pattern molecules from damaged matrix and injured cells can also activate TLR4 signaling. In humans, single nucleotide polymorphisms of the TLR4 gene have an effect on its signal transduction and on associated risks of specific diseases, including cirrhosis. In liver, TLR4 is expressed by all parenchymal and non-parenchymal cell types, and contributes to tissue damage caused by a variety of etiologies. Intact TLR4 signaling was identified in hepatic stellate cells (HSCs), the major fibrogenic cell type in injured liver, and mediates key responses including an inflammatory phenotype, fibrogenesis and anti-apoptotic properties. Further clarification of the function and endogenous ligands of TLR4 signaling in HSCs and other liver cells could uncover novel mechanisms of fibrogenesis and facilitate the development of therapeutic strategies

    Tomographic Imaging Using Photonically Generated Low-Coherence Terahertz Noise Sources

    No full text
    Three-dimensional (3D) terahertz (THz) imaging or THz tomography has recently proven to be powerful for non-destructive testing of industrial materials and structures. In order to reduce complexity and cost of conventional THz tomography systems, we propose a new approach using broadband THz noise sources based on amplified spontaneous emission noise, which is analogous to the optical coherence tomography (OCT) using broadband infrared sources. We have experimentally demonstrated a 3D imaging system with depth and spatial resolutions of 1 and 2 mm, respectively, by 280-380 GHz band noise signals.111317Nsciescopu
    corecore