836 research outputs found

    Ekstraksi dan Karakterisasi Selulosa dari Limbah Kulit Kacang Tanah (Arachys hypogaea L.) Sebagai Adsorben Ion Logam Besi

    Get PDF
    Penelitian ini bertujuan untuk mengetahui karakteristik selulosa dari limbah kulit kacang tanah yang meliputi kadar air, kadar abu, dan kadar selulosa serta mengetahui berapa daya adsorpsi optimum kulit kacang tanah terhadap ion logam besi berdasarkan variasi massa, pH, dan waktu kontak. Metode penelitian yang digunakan adalah metode kualitatif dan kuantitatif. Sampel yang digunakan dalam penelitian ini adalah kulit kacang tanah. Tahap pembuatan selulosa dari kulit kacang tanah terdiri dari tahap dewaxing, delignifikasi dan bleaching. Karakterisasi selulosa menggunakan Instrument Fourier Transform Infrared (FTIR). Aplikasi selulosa digunakan sebagai adsorben logam besi dengan menggunakan Atomic Absorption Spektrofotometri (AAS). Hasil penelitian menunjukkan bahwa selulosa yang diperoleh memiliki kadar abu sebesar 5,01%, kadar air 2,7%, kadar selulosa 59,58%. Hasil optimum untuk variasi massa adalah 1 gram dengan konsentrasi besi yang teradsorpsi adalah 0,7467 mg/L, untuk hasil optimum pada variasi pH adalah pH 5 dengan konsentrasi besi yang teradsorpsi adalah 0,8502 mg/L, dan untuk variasi waktu kontak paling optimum adalah 90 menit dengan konsentrasi besi yang teradsorpsi adalah 0,5386 mg/L

    Theoretical study of the thermal behavior of free and alumina-supported Fe-C nanoparticles

    Full text link
    The thermal behavior of free and alumina-supported iron-carbon nanoparticles is investigated via molecular dynamics simulations, in which the effect of the substrate is treated with a simple Morse potential fitted to ab initio data. We observe that the presence of the substrate raises the melting temperature of medium and large Fe1xCxFe_{1-x}C_x nanoparticles (xx = 0-0.16, NN = 80-1000, non- magic numbers) by 40-60 K; it also plays an important role in defining the ground state of smaller Fe nanoparticles (NN = 50-80). The main focus of our study is the investigation of Fe-C phase diagrams as a function of the nanoparticle size. We find that as the cluster size decreases in the 1.1-1.6-nm-diameter range the eutectic point shifts significantly not only toward lower temperatures, as expected from the Gibbs-Thomson law, but also toward lower concentrations of C. The strong dependence of the maximum C solubility on the Fe-C cluster size may have important implications for the catalytic growth of carbon nanotubes by chemical vapor deposition.Comment: 13 pages, 11 figures, higher quality figures can be seen in article 9 at http://alpha.mems.duke.edu/wahyu

    The Haldane-Rezayi Quantum Hall State and Magnetic Flux

    Full text link
    We consider the general abelian background configurations for the Haldane-Rezayi quantum Hall state. We determine the stable configurations to be the ones with the spontaneous flux of (Z+1/2)ϕ0(\Z+1/2) \phi_0 with ϕ0=hc/e\phi_0 = hc/e. This gives the physical mechanism by which the edge theory of the state becomes identical to the one for the 331 state. It also provides a new experimental consequence which can be tested in the enigmatic ν=5/2\nu=5/2 plateau in a single layer system.Comment: RevTex, 5 pages, 2 figures. v2:minor corrections. v4: published version. Discussion on the thermodynamic limit adde

    Dependence of the superconducting effective mass on doping in cuprates

    Full text link
    Using a doping-determined multiband model spectrum of a "typical'' cuprate the effective mass of the paired carriers is calculated on the whole doping scale. Large mabm_{ab} values quench rapidly with leaving the very underdoped region. Further slower diminishing of mabm_{ab} reproduces the trend towards restoring the Fermi-liquid behaviour in cuprates with progressive doping. The interband superconducting condensate density (nsn_s) shows similar behaviour to the transition temperature and superconducting gaps. The ns(0)/mabn_s(0)/m_{ab} ratio has an expressed maximum close to optimal doping as also the thermodynamic critical field. All the overlapping band components are intersected by the chemical potential at this. The pairing strength and the phase coherence develop simultaneously. In spite of its simplicity, the model describes the behaviour of various cuprate characteristics on the doping scale.Comment: 9 pages, 5 figure

    Evolution of the electronic structure from electron-doped to hole-doped states in the two-dimensional Mott-Hubbard system La1.17-xPbxVS3.17

    Full text link
    The filling-controlled metal-insulator transition (MIT) in a two-dimensional Mott-Hubbard system La1.17-xPbxVS3.17 has been studied by photoemission spectroscopy. With Pb substitution x, chemical potential mu abruptly jumps by ~ 0.07 eV between x=0.15 and 0.17, indicating that a charge gap is opened at x ~= 0.16 in agreement with the Mott insulating state of the d2 configuration. When holes or electrons are doped into the Mott insulator of x ~= 0.16, the gap is filled and the photoemission spectral weight at mu, rho(mu), gradually increases in a similar way to the electronic specific heat coefficient, although the spectral weight remains depressed around mu compared to that expected for a normal metal, showing a pseudogap behavior in the metallic samples. The observed behavior of varrho(mu)->0 for x->0.16 is contrasted with the usual picture that the electron effective mass of the Fermi-liquid system is enhanced towards the metal-insulator boundary. With increasing temperature, the gap or the pseudogap is rapidly filled up, and the spectra at T=300 K appears to be almost those of a normal metal. Near the metal-insulator boundary, the spectra around mu are consistent with the formation of a Coulomb gap, suggesting the influence of long-range Coulomb interaction under the structural disorder intrinsic to this system.Comment: 8 pages, 12 figure

    Pulsed UCN production using a Doppler shifter at J-PARC

    Get PDF
    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-m/s\mathrm{m/s} velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-m/s\mathrm{m/s} velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is 8.33 Hz8.33~\mathrm{Hz} and the time width of the pulse at production is 4.4 ms4.4~\mathrm{ms}. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The 1 MW1~\mathrm{MW}-equivalent count rate of the output neutrons with longitudinal wavelengths longer than 58 nm58~\mathrm{nm} is 1.6×102 cps1.6 \times 10^{2}~\mathrm{cps}, while that of the true UCNs is 80 cps80~\mathrm{cps}. The spatial density at production is 1.4 UCN/cm31.4~\mathrm{UCN/cm^{3}}. This new UCN source enables us to research and develop apparatuses necessary for the investigation of the neutron electric dipole moment (nEDM).Comment: 32 pages, 15 fugures. A grammatical error was fixe

    Field theory of spin-singlet quantum Hall states

    Full text link
    We formulate a field theory for a class of spin-singlet quantum Hall states (the Haldane-Rezayi state and its variants) which have been proposed for the quantized Hall plateaus observed at the second lowest Landau level. A new essential ingredient is a class of super Chern-Simons field. We show that the known properties of the states are consistently described by it. We also give a 2+1 dimensional hierarchical construction. Implications of the proposal are discussed and a new physical picture of composite particles at the second lowest Landau level emerges.Comment: RevTex, 5 pages, 1 figur

    Chemical Potential Shift in Nd2x_{2-x}Cex_{x}CuO4_{4}: Contrasting Behaviors of the Electron- and Hole-Doped Cuprates

    Full text link
    We have studied the chemical potential shift in the electron-doped superconductor Nd2x_{2-x}Cex_{x}CuO4_{4} by precise measurements of core-level photoemission spectra. The result shows that the chemical potential monotonously increases with electron doping, quite differently from La2x_{2-x}Srx_{x}CuO4_{4}, where the shift is suppressed in the underdoped region. If the suppression of the shift in La2x_{2-x}Srx_{x}CuO4_{4} is attributed to strong stripe fluctuations, the monotonous increase of the chemical potential is consistent with the absence of stripe fluctuations in Nd2x_{2-x}Cex_{x}CuO4_{4}. The chemical potential jump between Nd2_{2}CuO4_{4} and La2_{2}CuO4_{4} is found to be much smaller than the optical band gaps.Comment: 4 pages, 5 figure
    corecore