1,582 research outputs found

    From Type IIA Black Holes to T-dual Type IIB D-Instantons in N=2, D=4 Supergravity

    Get PDF
    We discuss the T-duality between the solutions of type IIA versus IIB superstrings compactified on Calabi-Yau threefolds. Within the context of the N=2, D=4 supergravity effective Lagrangian, the T-duality transformation is equivalently described by the c-map, which relates the special Kahler moduli space of the IIA N=2 vector multiplets to the quaternionic moduli space of the N=2 hyper multiplets on the type IIB side (and vice versa). Hence the T-duality, or c-map respectively, transforms the IIA black hole solutions, originating from even dimensional IIA branes, of the special Kahler effective action, into IIB D-instanton solutions of the IIB quaternionic sigma-model action, where the D-instantons can be obtained by compactifying odd IIB D-branes on the internal Calabi-Yau space. We construct via this mapping a broad class of D-instanton solutions in four dimensions which are determinded by a set of harmonic functions plus the underlying topological Calabi-Yau data.Comment: LaTeX, 37 pages. Some typos fixed. Final version, to appear in Nucl. Phys.

    Blind extraction of an exoplanetary spectrum through Independent Component Analysis

    Full text link
    Blind-source separation techniques are used to extract the transmission spectrum of the hot-Jupiter HD189733b recorded by the Hubble/NICMOS instrument. Such a 'blind' analysis of the data is based on the concept of independent component analysis. The de-trending of Hubble/NICMOS data using the sole assumption that nongaussian systematic noise is statistically independent from the desired light-curve signals is presented. By not assuming any prior, nor auxiliary information but the data themselves, it is shown that spectroscopic errors only about 10 - 30% larger than parametric methods can be obtained for 11 spectral bins with bin sizes of ~0.09 microns. This represents a reasonable trade-off between a higher degree of objectivity for the non-parametric methods and smaller standard errors for the parametric de-trending. Results are discussed in the light of previous analyses published in the literature. The fact that three very different analysis techniques yield comparable spectra is a strong indication of the stability of these results.Comment: ApJ accepte

    Understanding Genotypes and Phenotypes in Epileptic Encephalopathies

    Get PDF
    Epileptic encephalopathies are severe often intractable seizure disorders where epileptiform abnormalities contribute to a progressive disturbance in brain function. Often, epileptic encephalopathies start in childhood and are accompanied by developmental delay and various neurological and non-neurological comorbidities. In recent years, this concept has become virtually synonymous with a group of severe childhood epilepsies including West syndrome, Lennox-Gastaut syndrome, Dravet syndrome, and several other severe childhood epilepsies for which genetic factors are increasingly recognized. In the last 5 years, the field has seen a virtual explosion of gene discovery, raising the number of bona fide genes and possible candidate genes for epileptic encephalopathies to more than 70 genes, explaining 20-25% of all cases with severe early-onset epilepsies that had otherwise no identifiable causes. This review will focus on the phenotypic variability as a characteristic aspect of genetic epilepsies. For many genetic epilepsies, the phenotypic presentation can be broad, even in patients with identical genetic alterations. Furthermore, patients with different genetic etiologies can have seemingly similar clinical presentations, such as in Dravet syndrome. While most patients carry mutations in SCN1A, similar phenotypes can be seen in patients with mutations in PCDH19, CHD2, SCN8A, or in rare cases GABRA1 and STXBP1. In addition to the genotypic and phenotypic heterogeneity, both benign phenotypes and severe encephalopathies have been recognized in an increasing number of genetic epilepsies, raising the question whether these conditions represent a fluid continuum or distinct entities

    C-Jun N-terminal kinase 2 promotes liver injury via the mitochondrial permeability transition after hemorrhage and resuscitation

    Get PDF
    Hemorrhagic shock leads to hepatic hypoperfusion and activation of mitogen-activated stress kinases (MAPK) like c-Jun N-terminal kinase (JNK) 1 and 2. Our aim was to determine whether mitochondrial dysfunction leading to hepatic necrosis and apoptosis after hemorrhage/resuscitation (H/R) was dependent on JNK2. Under pentobarbital anesthesia, wildtype (WT) and JNK2 deficient (KO) mice were hemorrhaged to 30 mm Hg for 3 h and then resuscitated with shed blood plus half the volume of lactated Ringer's solution. Serum alanine aminotransferase (ALT), necrosis, apoptosis and oxidative stress were assessed 6 h after resuscitation. Mitochondrial polarization was assessed by intravital microscopy. After H/R, ALT in WT-mice increased from 130 U/L to 4800 U/L. In KO-mice, ALT after H/R was blunted to 1800 U/l (P < 0.05). Necrosis, caspase-3 activity and ROS were all substantially decreased in KO compared to WT mice after H/R. After sham operation, intravital microscopy revealed punctate mitochondrial staining by rhodamine 123 (Rh123), indicating normal mitochondrial polarization. At 4 h after H/R, Rh123 staining became dim and diffuse in 58% of hepatocytes, indicating depolarization and onset of the mitochondrial permeability transition (MPT). By contrast, KO mice displayed less depolarization after H/R (23%, P < 0.05). In conclusion, JNK2 contributes to MPT-mediated liver injury after H/R

    Inversion of Scholte wave dispersion and waveform modeling for shallow structure of the Ninetyeast Ridge

    Get PDF
    The construction of S-wave velocity models of marine sediments down to hundreds of meters below the seafloor is important in a number of disciplines. One of the most significant trends in marine geophysics is to use interface waves to estimate shallow shear velocities which play an important role in determining the shallow crustal structure. In marine settings, the waves trapped near the fluid-solid interface are called Scholte waves, and this is the subject of the study. In 1998, there were experiments on the Ninetyeast Ridge (Central Indian Ocean) to study the shallow seismic structure at the drilled site. The data were acquired by both ocean bottom seismometer and ocean bottom hydrophone. A new type of seafloor implosion sources has been used in this experiment, which successfully excited fast and high frequency (&gt; 500 Hz) body waves and slow, intermediate frequency (&lt; 20 Hz) Scholte waves. The fundamental and first higher mode Scholte waves have both been excited by the implosion source. Here, the Scholte waves are investigated with a full waveform modeling and a group velocity inversion approach. Shear wave velocities for the uppermost layers of the region are inferred and results from the different methods are compared. We find that the full waveform modeling is important to understand the intrinsic attenuation of the Scholte waves between 1 and 20 Hz. The modeling shows that the S-wave velocity varies from 195 to 350 m/s in the first 16 m of the uppermost layer. Depths levels of high S-wave impedance contrasts compare well to the layer depth derived from a P-wave analysis as well as from drilling data. As expected, the P- to S-wave velocity ratio is very high in the uppermost 16 m of the seafloor and the Poisson ratio is nearly 0.5. Depth levels of high S-wave impedance contrasts are comparable to the layer depth derived from drilling data
    corecore