414 research outputs found

    Hydrolysis of functional monomers in a single-bottle self-etching primer - Correlation of 13C NMR and TEM findings

    Get PDF
    Self-etching primers/adhesives that combine acidic methacrylate monomers with water in a single bottle are hydrolytically unstable and require refrigeration to extend their shelf-lives. This study tested the null hypothesis that one year of intermittent refrigeration of a 4-MET-containing simplified self-etching primer does not result in hydrolytic changes that are identifiable by transmission electron microscopy and 13C NMR spectroscopy. Human dentin was bonded with UniFil Bond immediately after being unpacked, or after one year of intermittent refrigeration at 4°C. Fresh and aged primers were analyzed by NMR for chemical changes. Ultrastructural observations indicated that there was an augmentation in etching capacity of the aged adhesive that was not accompanied by resin infiltration or effective polymerization. New NMR peaks detected from the aged ethanol-based primer confirmed that degradation occurred initially via esterification with ethanol, followed by hydrolysis of both ester groups in the 4-MET. Hydrolysis of functional methacrylate monomers occurs despite intermittent refrigeration.published_or_final_versio

    Exploration for Functional Nucleotide Sequence Candidates within Coding Regions of Mammalian Genes

    Get PDF
    The primary role of a protein coding gene is to encode amino acids. Therefore, synonymous sites of codons, which do not change the encoded amino acid, are regarded as evolving neutrally. However, if a certain region of a protein coding gene contains a functional nucleotide element (e.g. splicing signals), synonymous sites in the region may have selective pressure. The existence of such elements would be detected by searching regions of low nucleotide substitution. We explored invariant nucleotide sequences in 10 790 orthologous genes of six mammalian species (Homo sapiens, Macaca mulatta, Mus musculus, Rattus norvegicus, Bos taurus, and Canis familiaris), and extracted 4150 sequences whose conservation is significantly stronger than other regions of the gene and named them significantly conserved coding sequences (SCCSs). SCCSs are observed in 2273 genes. The genes are mainly involved with development, transcriptional regulation, and the neurons, and are expressed in the nervous system and the head and neck organs. No strong influence of conventional factors that affect synonymous substitution was observed in SCCSs. These results imply that SCCSs may have double function as nucleotide element and protein coding sequence and retained in the course of mammalian evolution

    Water concentration in self-etching primers affects their aggressiveness and bonding efficacy to dentin

    Get PDF
    Water is required to ionize acid resin monomers for demineralization of tooth substrates. We tested the null hypothesis that altering the water concentration in two-step self-etching primers has no effect on their aggressiveness and bonding efficacy to dentin. Five experimental self-etching primers were prepared with resin-water-ethanol volume ratios of 9-0-1, 8-1-1, 7-2-1, 5-4-1, and 3-6-1. They were applied to smear-layer-covered dentin, followed by a bonding resin and composite build-ups for microtensile bond testing and TEM examination of tracer penetration. Increasing water concentration from 0-60 vol% improved acidic monomer ionization that was manifested as increasing hybrid layer thickness. However, significantly higher bond strength was observed in the 7-2-1 group, with minimal nanoleakage in the corresponding hybrid layer. When self-etching primers are formulated, a balance must be achieved to provide sufficient water for adequate ionization of the acidic monomers, without lowering the resin concentration too much, to optimize their bonding efficacy to dentin.published_or_final_versio

    Dynamic ATR-FTIR and TEM study of the resin-dentin interface in Reactmer Bond

    Get PDF
    Abstract no. 895published_or_final_versio

    Genome landscapes and bacteriophage codon usage

    Get PDF
    Across all kingdoms of biological life, protein-coding genes exhibit unequal usage of synonmous codons. Although alternative theories abound, translational selection has been accepted as an important mechanism that shapes the patterns of codon usage in prokaryotes and simple eukaryotes. Here we analyze patterns of codon usage across 74 diverse bacteriophages that infect E. coli, P. aeruginosa and L. lactis as their primary host. We introduce the concept of a `genome landscape,' which helps reveal non-trivial, long-range patterns in codon usage across a genome. We develop a series of randomization tests that allow us to interrogate the significance of one aspect of codon usage, such a GC content, while controlling for another aspect, such as adaptation to host-preferred codons. We find that 33 phage genomes exhibit highly non-random patterns in their GC3-content, use of host-preferred codons, or both. We show that the head and tail proteins of these phages exhibit significant bias towards host-preferred codons, relative to the non-structural phage proteins. Our results support the hypothesis of translational selection on viral genes for host-preferred codons, over a broad range of bacteriophages.Comment: 9 Color Figures, 5 Tables, 53 Reference

    Does codon bias have an evolutionary origin?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a 3-fold redundancy in the Genetic Code; most amino acids are encoded by more than one codon. These synonymous codons are not used equally; there is a Codon Usage Bias (CUB). This article will provide novel information about the origin and evolution of this bias.</p> <p>Results</p> <p>Codon Usage Bias (CUB, defined here as deviation from equal usage of synonymous codons) was studied in 113 species. The average CUB was 29.3 ± 1.1% (S.E.M, n = 113) of the theoretical maximum and declined progressively with evolution and increasing genome complexity. A Pan-Genomic Codon Usage Frequency (CUF) Table was constructed to describe genome-wide relationships among codons. Significant correlations were found between the number of synonymous codons and (i) the frequency of the respective amino acids (ii) the size of CUB. Numerous, statistically highly significant, internal correlations were found among codons and the nucleic acids they comprise. These strong correlations made it possible to predict missing synonymous codons (wobble bases) reliably from the remaining codons or codon residues.</p> <p>Conclusion</p> <p>The results put the concept of "codon bias" into a novel perspective. The internal connectivity of codons indicates that all synonymous codons might be integrated parts of the Genetic Code with equal importance in maintaining its functional integrity.</p

    Primary skin fibroblasts as a model of Parkinson's disease

    Get PDF
    Parkinson's disease is the second most frequent neurodegenerative disorder. While most cases occur sporadic mutations in a growing number of genes including Parkin (PARK2) and PINK1 (PARK6) have been associated with the disease. Different animal models and cell models like patient skin fibroblasts and recombinant cell lines can be used as model systems for Parkinson's disease. Skin fibroblasts present a system with defined mutations and the cumulative cellular damage of the patients. PINK1 and Parkin genes show relevant expression levels in human fibroblasts and since both genes participate in stress response pathways, we believe fibroblasts advantageous in order to assess, e.g. the effect of stressors. Furthermore, since a bioenergetic deficit underlies early stage Parkinson's disease, while atrophy underlies later stages, the use of primary cells seems preferable over the use of tumor cell lines. The new option to use fibroblast-derived induced pluripotent stem cells redifferentiated into dopaminergic neurons is an additional benefit. However, the use of fibroblast has also some drawbacks. We have investigated PARK6 fibroblasts and they mirror closely the respiratory alterations, the expression profiles, the mitochondrial dynamics pathology and the vulnerability to proteasomal stress that has been documented in other model systems. Fibroblasts from patients with PARK2, PARK6, idiopathic Parkinson's disease, Alzheimer's disease, and spinocerebellar ataxia type 2 demonstrated a distinct and unique mRNA expression pattern of key genes in neurodegeneration. Thus, primary skin fibroblasts are a useful Parkinson's disease model, able to serve as a complement to animal mutants, transformed cell lines and patient tissues

    Prospective blind comparative clinical study of two point fixation of zygomatic complex fracture using wire and mini plates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The zygomatic maxillary complex (ZMC) fractures are one of the most frequent injuries of the facial skeleton due to its position and facial contour. Assaults, road traffic accidents and falls are the principal etiologic factors that may cause fractures of zygomatic bone. The different fixation methods are applied to treat the zygomatic bone fractures, with many more classifications which have been described in the literature for the ease of management. The type of the fracture, its severity and associated facial fractures usually interferes the treatment modality.</p> <p>Purpose of study</p> <p>The aim of this paper is to show the results of 18yrs prospective blind comparative study using wire and plate osteosynthesis which needed open reduction and internal fixation involving Type II to Type IV Spissel and Schroll ZMC fractures.</p> <p>Materials and methods</p> <p>Total 80 cases included in the study out of 1780 ZMC cases which were treated using wire and plate osteosynthesis over a period of 18 yrs, involving only Type II to Type IV Spissel and Schroll ZMC fractures. Other types excluded from study to prevent observer bias. All the fixations carried out through Standard Dingman's incision using stainless steel 26 gauze wire and titanium 1.5 mm mini plate system under general anesthesia by single maxillofacial surgeon and evaluated by another maxillofacial surgeon who is blinded for surgical procedure after 2 and 4 wks of follow-up for facial symmetry, wound healing, functional assessment (mouth opening, diplopia), and sensory disturbance. All the data tabulated in Excel software (Microsoft) for statistical analysis. P-value calculated to know the Significance of treatment modality in all aspects.</p> <p>Results</p> <p>Result shows no significant p-values indicating both the operating techniques are equally efficient in the surgical management of ZMC fracture.</p> <p>Conclusion</p> <p>Osteosynthesis by mini plates is simple, logical and effective treatment compared to wire osteosynthesis in regard to stability of fracture fragments. Wire osteosynthesis will be helpful in emergency surgeries or where the mini plates are not available. Even though the wire osteosynthesis is economical compared to mini plate fixation; but the time and skill is required for fixation of wires.</p
    corecore