399 research outputs found

    X-ray Diagnostics of Thermal Conditions of the Hot Plasmas in the Centaurus Cluster

    Full text link
    X-ray data of the Centaurus cluster, obtained with {\it XMM-Newton} for 45 ksec, were analyzed. Deprojected EPIC spectra from concentric thin shell regions were reproduced equally well by a single-phase plasma emission model, or by a two-phase model developed by {\it ASCA}, both incorporating cool (1.7--2.0 keV) and hot (∼4\sim 4 keV) plasma temperatures. However, EPIC spectra with higher statistics, accumulated over 3-dimentional thick shell regions, were reproduced better by the two-phase model than by the singe-phase one. Therefore, hot and cool plasma phases are inferred to co-exist in the cluster core region within ∼70\sim 70 kpc. The iron and silicon abundances of the plasma were reconfirmed to increase significantly towards the center, while that of oxygen was consistent with being radially constant. The implied non-solar abundance ratios explains away the previously reported excess X-ray absorption from the central region. Although an additional cool (∼0.7\sim 0.7 keV) emission was detected within ∼20\sim 20 kpc of the center, the RGS data gave tight upper limits on any emission with a tempeartures below ∼0.5\sim 0.5 keV. These results are compiled into a magnetosphere model, which interprets the cool phase as confined within closed magnetic loops anchored to the cD galaxy. When combined with so-called Rosner-Tucker-Vaiana mechanism which applies to solar coronae, this model can potentially explain basic properties of the cool phase, including its temperature and thermal stability.Comment: 53 pages, 11 figures, accepted for publication in Astrophysical Journa

    A second consensus sequence of ATP-requiring proteins resides in the 21-kDa C-terminal segment of myosin subfragment 1

    Get PDF
    AbstractPrevious comparisons of sequence homologies of ATP-requiring enzymes have defined three consensus sequences which appear to be involved in the binding of the nucleotide. One of these was identified in the N-terminal 27-kDa segment of the myosin heavy chain but the other two sequences have not hitherto been located in myosin. The present paper proposes that one of these other two consensus sequences is in the 21-kDa C-terminal portion of S1 and that it may contribute to the ATP binding domain

    Parallelization of Markov chain generation and its application to the multicanonical method

    Full text link
    We develop a simple algorithm to parallelize generation processes of Markov chains. In this algorithm, multiple Markov chains are generated in parallel and jointed together to make a longer Markov chain. The joints between the constituent Markov chains are processed using the detailed balance. We apply the parallelization algorithm to multicanonical calculations of the two-dimensional Ising model and demonstrate accurate estimation of multicanonical weights.Comment: 15 pages, 5 figures, uses elsart.cl

    Electrically driven spin excitation in a ferroelectric magnet DyMnO_3

    Full text link
    Temperature (5--250 K) and magnetic field (0--70 kOe) variations of the low-energy (1--10 meV) electrodynamics of spin excitations have been investigated for a complete set of light-polarization configurations for a ferroelectric magnet DyMnO3_3 by using terahertz time-domain spectroscopy. We identify the pronounced absorption continuum (1--8 meV) with a peak feature around 2 meV, which is electric-dipole active only for the light EE-vector along the a-axis. This absorption band grows in intensity with lowering temperature from the spin-collinear paraelectric phase above the ferroelectric transition, but is independent of the orientation of spiral spin plane (bcbc or abab), as shown on the original PsP_{\rm s} (ferroelectric polarization) ∥c\parallel c phase as well as the magnetic field induced Ps∥aP_{\rm s}\parallel a phase. The possible origin of this electric-dipole active band is argued in terms of the large fluctuations of spins and spin-current.Comment: New version, 11 pages including colored 8 figure

    Discovery of a binary AGN in the ultraluminous infrared galaxy NGC 6240 using Chandra

    Full text link
    Ultraluminous infrared galaxies (ULIRGs) are outstanding due to their huge luminosity output in the infrared, which is predominantly powered by super starbursts and/or hidden active galactic nuclei (AGN). NGC 6240 is one of the nearest ULIRGs and is considered a key representative of its class. Here, we report the first high-resolution imaging spectroscopy of NGC 6240 in X-rays. The observation, performed with the ACIS-S detector aboard the Chandra X-ray observatory, led to the discovery of two hard nuclei, coincident with the optical-IR nuclei of NGC 6240. The AGN character of both nuclei is revealed by the detection of absorbed hard, luminous X-ray emission and two strong neutral Fe_K_alpha lines. In addition, extended X-ray emission components are present, changing their rich structure in dependence of energy. The close correlation of the extended emission with the optical Halpha emission of NGC 6240, in combination with the softness of its spectrum, clearly indicates its relation to starburst-driven superwind activity.Comment: ApJ Letters in press, 7 colour figures included; preprint and related papers on NGC 6240 also available at http://www.xray.mpe.mpg.de/~skomossa

    On the Flux-Across-Surfaces Theorem

    Get PDF
    The quantum probability flux of a particle integrated over time and a distant surface gives the probability for the particle crossing that surface at some time. We prove the free Flux-Across-Surfaces Theorem, which was conjectured by Combes, Newton and Shtokhamer, and which relates the integrated quantum flux to the usual quantum mechanical formula for the cross section. The integrated quantum flux is equal to the probability of outward crossings of surfaces by Bohmian trajectories in the scattering regime.Comment: 13 pages, latex, 1 figure, very minor revisions, to appear in Letters in Mathematical Physics, Vol. 38, Nr.

    Scattering by a toroidal coil

    Full text link
    In this paper we consider the Schr\"odinger operator in R3{\mathbb R}^3 with a long-range magnetic potential associated to a magnetic field supported inside a torus T{\mathbb{T}}. Using the scheme of smooth perturbations we construct stationary modified wave operators and the corresponding scattering matrix S(λ)S(\lambda). We prove that the essential spectrum of S(λ)S(\lambda) is an interval of the unit circle depending only on the magnetic flux ϕ\phi across the section of T\mathbb{T}. Additionally we show that, in contrast to the Aharonov-Bohm potential in R2{\mathbb{R}}^2, the total scattering cross-section is always finite. We also conjecture that the case treated here is a typical example in dimension 3.Comment: LaTeX2e 17 pages, 1 figur

    Detection of an X-Ray Hot Region in the Virgo Cluster of Galaxies with ASCA

    Get PDF
    Based on mapping observations with ASCA, an unusual hot region with a spatial extent of 1 square degree was discovered between M87 and M49 at a center coordinate of R. A. = 12h 27m 36s and Dec. = 9∘18′9^\circ18' (J2000). The X-ray emission from the region has a 2-10 keV flux of 1×10−111 \times 10^{-11} ergs s−1^{-1} cm−2^{-2} and a temperature of kT≳4kT \gtrsim 4 keV, which is significantly higher than that in the surrounding medium of ∼2\sim 2 keV. The internal thermal energy in the hot region is estimated to be VnkT∼1060V n k T \sim 10^{60} ergs with a gas density of ∼10−4\sim 10^{-4} cm−3^{-3}. A power-law spectrum with a photon index 1.7−2.31.7-2.3 is also allowed by the data. The hot region suggests there is an energy input due to a shock which is probably caused by the motion of the gas associated with M49, infalling toward the M87 cluster with a velocity ≳1000\gtrsim 1000 km s−1^{-1}.Comment: 12 pages, 3 figures, accepted to ApJ

    Heavy X-ray Absorption in Soft X-ray Weak Active Galactic Nuclei

    Get PDF
    Recent ROSAT studies have identified a significant population of Active Galactic Nuclei (AGN) that are notably faint in soft X-rays relative to their optical fluxes. Are these AGN intrinsically X-ray weak or are they just highly absorbed? Brandt, Laor & Wills have systematically examined the optical and UV spectral properties of a well-defined sample of these soft X-ray weak (SXW) AGN drawn from the Boroson & Green sample of all the Palomar Green AGN with z<0.5. We present ASCA observations of three of these SXW AGN: PG 1011-040, PG 1535+547 (Mrk 486), and PG 2112+059. In general, our ASCA observations support the intrinsic absorption scenario for explaining soft X-ray weakness; both PG 1535+547 and PG 2112+059 show significant column densities (N_H~10^22-10^23 cm^-2) of absorbing gas. Interestingly, PG 1011-040 shows no spectral evidence for X-ray absorption. The weak X-ray emission may result from very strong absorption of a partially covered source, or this AGN may be intrinsically X-ray weak. PG 2112+059 is a Broad Absorption Line (BAL) QSO, and we find it to have the highest X-ray flux known of this class. It shows a typical power-law X-ray continuum above 3 keV; this is the first direct evidence that BAL QSOs indeed have normal X-ray continua underlying their intrinsic absorption. Finally, marked variability between the ROSAT and ASCA observations of PG 1535+547 and PG 2112+059 suggests that the soft X-ray weak designation may be transient, and multi-epoch 0.1-10.0 keV X-ray observations are required to constrain variability of the absorber and continuum.Comment: 30 pages, 10 figures, LaTeX, uses aaspp4.sty; submitted to Ap
    • …
    corecore