128 research outputs found

    Determinants of Functional Coupling between Astrocytes and Respiratory Neurons in the Pre-Bötzinger Complex

    Get PDF
    Respiratory neuronal network activity is thought to require efficient functioning of astrocytes. Here, we analyzed neuron-astrocyte communication in the pre-Bötzinger Complex (preBötC) of rhythmic slice preparations from neonatal mice. In astrocytes that exhibited rhythmic potassium fluxes and glutamate transporter currents, we did not find a translation of respiratory neuronal activity into phase-locked astroglial calcium signals. In up to 20% of astrocytes, 2-photon calcium imaging revealed spontaneous calcium fluctuations, although with no correlation to neuronal activity. Calcium signals could be elicited in preBötC astrocytes by metabotropic glutamate receptor activation or after inhibition of glial glutamate uptake. In the latter case, astrocyte calcium elevation preceded a surge of respiratory neuron discharge activity followed by network failure. We conclude that astrocytes do not exhibit respiratory-rhythmic calcium fluctuations when they are able to prevent synaptic glutamate accumulation. Calcium signaling is, however, observed when glutamate transport processes in astrocytes are suppressed or neuronal discharge activity is excessive

    Integration of imaging and circulating biomarkers in heart failure: a consensus document by the Biomarkers and Imaging Study Groups of the Heart Failure Association of the European Society of Cardiology

    Get PDF
    Circulating biomarkers and imaging techniques provide independent and complementary information to guide management of heart failure (HF). This consensus document by the Heart Failure Association (HFA) of the European Society of Cardiology (ESC) presents current evidence-based indications relevant to integration of imaging techniques and biomarkers in HF. The document first focuses on application of circulating biomarkers together with imaging findings, in the broad domains of screening, diagnosis, risk stratification, guidance of treatment and monitoring, and then discusses specific challenging settings. In each section we crystallize clinically relevant recommendations and identify directions for future research. The target readership of this document includes cardiologists, internal medicine specialists and other clinicians dealing with HF patients

    Risk of Peritoneal Carcinomatosis After Risk-Reducing Salpingo-Oophorectomy:A Systematic Review and Individual Patient Data Meta-Analysis

    Get PDF
    PURPOSEAfter risk-reducing salpingo-oophorectomy (RRSO), BRCA1/2 pathogenic variant (PV) carriers have a residual risk to develop peritoneal carcinomatosis (PC). The etiology of PC is not yet clarified, but may be related to serous tubal intraepithelial carcinoma (STIC), the postulated origin for high-grade serous cancer. In this systematic review and individual patient data meta-analysis, we investigate the risk of PC in women with and without STIC at RRSO.METHODSUnpublished data from three centers were supplemented by studies identified in a systematic review of EMBASE, MEDLINE, and the Cochrane library describing women with a BRCA-PV with and without STIC at RRSO until September 2020. Primary outcome was the hazard ratio for the risk of PC between BRCA-PV carriers with and without STIC at RRSO, and the corresponding 5- and 10-year risks. Primary analysis was based on a one-stage Cox proportional-hazards regression with a frailty term for study.RESULTSFrom 17 studies, individual patient data were available for 3,121 women, of whom 115 had a STIC at RRSO. The estimated hazard ratio to develop PC during follow-up in women with STIC was 33.9 (95% CI, 15.6 to 73.9), P <.001) compared with women without STIC. For women with STIC, the five- and ten-year risks to develop PC were 10.5% (95% CI, 6.2 to 17.2) and 27.5% (95% CI, 15.6 to 43.9), respectively, whereas the corresponding risks were 0.3% (95% CI, 0.2 to 0.6) and 0.9% (95% CI, 0.6 to 1.4) for women without STIC at RRSO.CONCLUSIONBRCA-PV carriers with STIC at RRSO have a strongly increased risk to develop PC which increases over time, although current data are limited by small numbers of events

    Multi-minicore Disease

    Get PDF
    Multi-minicore Disease (MmD) is a recessively inherited neuromuscular disorder characterized by multiple cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown. Marked clinical variability corresponds to genetic heterogeneity: the most instantly recognizable classic phenotype characterized by spinal rigidity, early scoliosis and respiratory impairment is due to recessive mutations in the selenoprotein N (SEPN1) gene, whereas recessive mutations in the skeletal muscle ryanodine receptor (RYR1) gene have been associated with a wider range of clinical features comprising external ophthalmoplegia, distal weakness and wasting or predominant hip girdle involvement resembling central core disease (CCD). In the latter forms, there may also be a histopathologic continuum with CCD due to dominant RYR1 mutations, reflecting the common genetic background. Pathogenetic mechanisms of RYR1-related MmD are currently not well understood, but likely to involve altered excitability and/or changes in calcium homeoestasis; calcium-binding motifs within the selenoprotein N protein also suggest a possible role in calcium handling. The diagnosis of MmD is based on the presence of suggestive clinical features and multiple cores on muscle biopsy; muscle MRI may aid genetic testing as patterns of selective muscle involvement are distinct depending on the genetic background. Mutational analysis of the RYR1 or the SEPN1 gene may provide genetic confirmation of the diagnosis. Management is mainly supportive and has to address the risk of marked respiratory impairment in SEPN1-related MmD and the possibility of malignant hyperthermia susceptibility in RYR1-related forms. In the majority of patients, weakness is static or only slowly progressive, with the degree of respiratory impairment being the most important prognostic factor

    Estimation of incidence and social cost of colon cancer due to nitrate in drinking water in the EU: a tentative cost-benefit assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Presently, health costs associated with nitrate in drinking water are uncertain and not quantified. This limits proper evaluation of current policies and measures for solving or preventing nitrate pollution of drinking water resources. The cost for society associated with nitrate is also relevant for integrated assessment of EU nitrogen policies taking a perspective of welfare optimization. The overarching question is at which nitrogen mitigation level the social cost of measures, including their consequence for availability of food and energy, matches the social benefit of these measures for human health and biodiversity.</p> <p>Methods</p> <p>Epidemiological studies suggest colon cancer to be possibly associated with nitrate in drinking water. In this study risk increase for colon cancer is based on a case-control study for Iowa, which is extrapolated to assess the social cost for 11 EU member states by using data on cancer incidence, nitrogen leaching and drinking water supply in the EU. Health costs are provisionally compared with nitrate mitigation costs and social benefits of fertilizer use.</p> <p>Results</p> <p>For above median meat consumption the risk of colon cancer doubles when exposed to drinking water exceeding 25 mg/L of nitrate (NO<sub>3</sub>) for more than ten years. We estimate the associated increase of incidence of colon cancer from nitrate contamination of groundwater based drinking water in EU11 at 3%. This corresponds to a population-averaged health loss of 2.9 euro per capita or 0.7 euro per kg of nitrate-N leaching from fertilizer.</p> <p>Conclusions</p> <p>Our cost estimates indicate that current measures to prevent exceedance of 50 mg/L NO<sub>3 </sub>are probably beneficial for society and that a stricter nitrate limit and additional measures may be justified. The present assessment of social cost is uncertain because it considers only one type of cancer, it is based on one epidemiological study in Iowa, and involves various assumptions regarding exposure. Our results highlight the need for improved epidemiological studies.</p

    Post translational changes to α-synuclein control iron and dopamine trafficking : a concept for neuron vulnerability in Parkinson's disease

    Get PDF
    Parkinson's disease is a multifactorial neurodegenerative disorder, the aetiology of which remains elusive. The primary clinical feature of progressively impaired motor control is caused by a loss of midbrain substantia nigra dopamine neurons that have a high α-synuclein (α-syn) and iron content. α-Syn is a neuronal protein that is highly modified post-translationally and central to the Lewy body neuropathology of the disease. This review provides an overview of findings on the role post translational modifications to α-syn have in membrane binding and intracellular vesicle trafficking. Furthermore, we propose a concept in which acetylation and phosphorylation of α-syn modulate endocytic import of iron and vesicle transport of dopamine during normal physiology. Disregulated phosphorylation and oxidation of α-syn mediate iron and dopamine dependent oxidative stress through impaired cellular location and increase propensity for α-syn aggregation. The proposition highlights a connection between α-syn, iron and dopamine, three pathological components associated with disease progression in sporadic Parkinson's disease

    Building a nuclear envelope at the end of mitosis: coordinating membrane reorganization, nuclear pore complex assembly, and chromatin de-condensation

    Full text link
    • …
    corecore