189 research outputs found
Impeded Growth of Magnetic Flux Bubbles in the Intermediate State Pattern of Type I Superconductors
Normal state bubble patterns in Type I superconducting Indium and Lead slabs
are studied by the high resolution magneto-optical imaging technique. The size
of bubbles is found to be almost independent of the long-range interaction
between the normal state domains. Under bubble diameter and slab thickness
proper scaling, the results gather onto a single master curve. On this basis,
in the framework of the "current-loop" model [R.E. Goldstein, D.P. Jackson and
A.T. Dorsey, Phys. Rev. Lett. 76, 3818 (1996)], we calculate the equilibrium
diameter of an isolated bubble resulting from the competition between the
Biot-and-Savart interaction of the Meissner current encircling the bubble and
the superconductor-normal interface energy. A good quantitative agreement with
the master curve is found over two decades of the magnetic Bond number. The
isolation of each bubble in the superconducting matrix and the existence of a
positive interface energy are shown to preclude any continuous size variation
of the bubbles after their formation, contrary to the prediction of mean-field
models.Comment: \'{e}quipe Nanostructures Quantique
An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg--Landau problem
This paper considers the extreme type-II Ginzburg--Landau equations, a
nonlinear PDE model for describing the states of a wide range of
superconductors. Based on properties of the Jacobian operator and an AMG
strategy, a preconditioned Newton--Krylov method is constructed. After a
finite-volume-type discretization, numerical experiments are done for
representative two- and three-dimensional domains. Strong numerical evidence is
provided that the number of Krylov iterations is independent of the dimension
of the solution space, yielding an overall solver complexity of O(n)
Model independent approach to studies of the confining dual Abrikosov vortex in SU(2) lattice gauge theory
We address the problem of determining the type I, type II or borderline dual
superconductor behavior in maximal Abelian gauge SU(2) through the study of the
dual Abrikosov vortex. We find that significant electric currents in the
simulation data call into question the use of the dual Ginzburg Landau Higgs
model in interpreting the data. Further, two definitions of the penetration
depth parameter take two different values. The splitting of this parameter into
two is intricately connected to the existence of electric currents. It is
important in our approach that we employ definitions of flux and electric and
magnetic currents that respect Maxwell equations exactly for lattice averages
independent of lattice spacings. Applied to specific Wilson loop sizes, our
conclusions differ from those that use the dual GLH model.Comment: 18 pages, 14 figures, change title, new anaylysis with more figure
Critical currents in Josephson junctions with macroscopic defects
The critical currents in Josephson junctions of conventional superconductors
with macroscopic defects are calculated for different defect critical current
densities as a function of the magnetic field. We also study the evolution of
the different modes with the defect position, at zero external field. We study
the stability of the solutions and derive simple arguments, that could help the
defect characterization. In most cases a reentrant behavior is seen, where both
a maximum and a minimum current exist.Comment: 17 pages with 16 figures, submitted to Supercond. Sci. Techno
Type-1.5 Superconductors
We demonstrate the existence of a novel superconducting state in high quality
two-component MgB2 single crystalline superconductors where a unique
combination of both type-1 (kappa_1 0.707)
superconductor conditions is realized for the two components of the order
parameter. This condition leads to a vortex-vortex interaction attractive at
long distances and repulsive at short distances, which stabilizes
unconventional stripe- and gossamer-like vortex patterns that we have
visualized in this type-1.5 superconductor using Bitter decoration and also
reproduced in numerical simulations.Comment: accepted in Phys. Rev. Let
Vortex Pull by an External Current
In the context of a dynamical Ginzburg-Landau model it is shown numerically
that under the influence of a homogeneous external current J the vortex drifts
against the current with velocity in agreement to earlier analytical
predictions. In the presence of dissipation the vortex undergoes skew
deflection at an angle with respect to the
external current. It is shown analytically and verified numerically that the
angle and the speed of the vortex are linked through a simple
mathematical relation.Comment: 19 pages, LATEX, 6 Postscript figures included in separate compressed
fil
The Suprafroth (Superconducting Froth)
The structure and dynamics of froths have been subjects of intense interest
due to the desire to understand the behaviour of complex systems where
topological intricacy prohibits exact evaluation of the ground state. The
dynamics of a traditional froth involves drainage and drying in the cell
boundaries, thus it is irreversible. We report a new member to the froths
family: suprafroth, in which the cell boundaries are superconducting and the
cell interior is normal phase. Despite very different microscopic origin,
topological analysis of the structure of the suprafroth shows that statistical
von Neumann and Lewis laws apply. Furthermore, for the first time in the
analysis of froths there is a global measurable property, the magnetic moment,
which can be directly related to the suprafroth structure. We propose that this
suprafroth is a new, model system for the analysis of the complex physics of
two-dimensional froths
Nernst effect of iron pnictide and cuprate superconductors: signatures of spin density wave and stripe order
The Nernst effect has recently proven a sensitive probe for detecting unusual
normal state properties of unconventional superconductors. In particular, it
may sensitively detect Fermi surface reconstructions which are connected to a
charge or spin density wave (SDW) ordered state, and even fluctuating forms of
such a state. Here we summarize recent results for the Nernst effect of the
iron pnictide superconductor , whose ground state evolves
upon doping from an itinerant SDW to a superconducting state, and the cuprate
superconductor which exhibits static stripe
order as a ground state competing with the superconductivity. In , the SDW order leads to a huge Nernst response, which allows
to detect even fluctuating SDW precursors at superconducting doping levels
where long range SDW order is suppressed. This is in contrast to the impact of
stripe order on the normal state Nernst effect in . Here, though signatures of the stripe order are
detectable in the temperature dependence of the Nernst coefficient, its overall
temperature dependence is very similar to that of ,
where stripe order is absent. The anomalies which are induced by the stripe
order are very subtle and the enhancement of the Nernst response due to static
stripe order in as compared to that of the
pseudogap phase in , if any, is very small.Comment: To appear in: 'Properties and applications of thermoelectric
materials - II', V. Zlatic and A. Hewson, editors, Proceedings of NATO
Advanced Research Workshop, Hvar, Croatia, September 19 -25, 2011, NATO
Science for Peace and Security Series B: Physics and Biophysics, (Springer
Science+Business Media B.V. 2012
Casimir Forces for Robin Scalar Field on Cylindrical Shell in de Sitter Space
The Casimir stress on a cylinderical shell in background of conformally flat
space-time for massless scalar field is investigated. In the general case of
Robin (mixed) boundary condition formulae are derived for the vacuum
expectation values of the energy-momentum tensor and vacuum forces acting on
boundaries. The special case of the dS bulk is considered then different
cosmological constants are assumed for the space inside and outside of the
shell to have general results applicable to the case of cylindrical domain wall
formations in the early universe.Comment: 10 pages, no figur
Temperature and magnetic-field dependence of the conductivity of YBaCuO films in the vicinity of superconducting transition: Effect of Tc-inhomogeneity
Temperature and magnetic field dependences of the conductivity of YBaCuO
films in the transition region are analyzed taking into account spatial
inhomogeneity in transition temperature, Tc.
(i) An expression for the superconducting contribution to conductivity,
\sigma_s(T,H,Tc), of a homogeneous superconductor for H<<Hc2(T=0) is obtained
using the solution of the Ginzburg-Landau equation in form of perturbation
expansions [S.Ullah, A.T.Dorsey, PRB 44, 262 (1991)].
(ii) The error in \sigma_s(T,H,Tc) occurring due to the presence of
Tc-inhomogeneity is calculated and plotted on an H-T plane diagram. These
calculations use an effective medium approximation and a Gaussian distribution
of Tc.
(iii) Measuring the temperature dependences of a voltage, induced by a
focused electron beam, we determine spatial distributions of the critical
temperature for YBaCuO microbridges with a 2 micron resolution. A typical
Tc-distribution dispersion is found to be approximately 1K. For such
dispersion, error in \sigma_s(T,H,Tc) due to Tc-inhomogeneity exceeds 30% for
magnetic fields H < 1 T and temperatures |T-Tc| < 0.5 K.
(iv) Experimental R(T,H) dependences of resistance are well described by a
numerical solution of a set of Kirchoff equations for the resistor network
based on the measured spatial distributions of Tc and the expression for
\sigma_s(T,H,Tc).Comment: REVTeX, 12 pages including 7 figures, resubmitted to Phys. Rev.
- …
