research

An optimal linear solver for the Jacobian system of the extreme type-II Ginzburg--Landau problem

Abstract

This paper considers the extreme type-II Ginzburg--Landau equations, a nonlinear PDE model for describing the states of a wide range of superconductors. Based on properties of the Jacobian operator and an AMG strategy, a preconditioned Newton--Krylov method is constructed. After a finite-volume-type discretization, numerical experiments are done for representative two- and three-dimensional domains. Strong numerical evidence is provided that the number of Krylov iterations is independent of the dimension nn of the solution space, yielding an overall solver complexity of O(n)

    Similar works

    Full text

    thumbnail-image