This paper considers the extreme type-II Ginzburg--Landau equations, a
nonlinear PDE model for describing the states of a wide range of
superconductors. Based on properties of the Jacobian operator and an AMG
strategy, a preconditioned Newton--Krylov method is constructed. After a
finite-volume-type discretization, numerical experiments are done for
representative two- and three-dimensional domains. Strong numerical evidence is
provided that the number of Krylov iterations is independent of the dimension
n of the solution space, yielding an overall solver complexity of O(n)