34 research outputs found

    Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    Get PDF
    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All these studies combined yield an extensive database of sequence information of the family Tetranychidae. We assembled this information in a single alignment and performed an overall phylogenetic analysis. The resulting phylogeny shows that important patterns have been overlooked in previous studies, whereas others disappear. It also reveals that mistakes were made in submitting the data to GenBank, which further disturbed interpretation of the data. Our total analysis clearly shows three clades that most likely correspond to the species T. urticae, T. kanzawai and T. truncatus. Intraspecific variation is very high, possibly due to selective sweeps caused by reproductive parasites. We found no evidence for host plant associations and phylogeographic patterns in T. urticae are absent. Finally we evaluate the application of DNA barcoding

    Population structure of the predatory mite Neoseiulus womersleyi in a tea field based on an analysis of microsatellite DNA markers

    Get PDF
    The predatory mite Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae) is an important natural enemy of the Kanzawa spider mite, Tetranychus kanzawaki Kishida (Acari: Tetranychidae), in tea fields. Attraction and preservation of natural enemies by habitat management to reduce the need for acaricide sprays is thought to enhance the activity of N. womersleyi. To better conserve N. womersleyi in the field, however, it is essential to elucidate the population genetic structure of this species. To this end, we developed ten microsatellite DNA markers for N. womersleyi. We then evaluated population structure of N. womersleyi collected from a tea field, where Mexican sunflower, Tithonia rotundifolia (Mill.), was planted to preserve N. womersleyi. Seventy-seven adult females were collected from four sites within 200 m. The fixation indexes FST among subpopulations were not significantly different. The kinship coefficients between individuals did not differ significantly within a site as a function of the sampling dates, but the coefficients gradually decreased with increasing distance. Bayesian clustering analysis revealed that the population consisted of three genetic clusters, and that subpopulations within 100 m, including those collected on T. rotundifolia, were genetically similar to each other. Given the previously observed population dynamics of N. womersleyi, it appears that the area inhabited by a given cluster of the mite did not exceed 100 m. The estimation of population structure using microsatellite markers will provide valuable information in conservation biological control

    The complete mitochondrial genome of the citrus red mite Panonychus citri (Acari: Tetranychidae): high genome rearrangement and extremely truncated tRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The family Tetranychidae (Chelicerata: Acari) includes ~1200 species, many of which are of agronomic importance. To date, mitochondrial genomes of only two Tetranychidae species have been sequenced, and it has been found that these two mitochondrial genomes are characterized by many unusual features in genome organization and structure such as gene order and nucleotide frequency. The scarcity of available sequence data has greatly impeded evolutionary studies in Acari (mites and ticks). Information on Tetranychidae mitochondrial genomes is quite important for phylogenetic evaluation and population genetics, as well as the molecular evolution of functional genes such as acaricide-resistance genes. In this study, we sequenced the complete mitochondrial genome of <it>Panonychus citri </it>(Family Tetranychidae), a worldwide citrus pest, and provide a comparison to other Acari.</p> <p>Results</p> <p>The mitochondrial genome of <it>P. citri </it>is a typical circular molecule of 13,077 bp, and contains the complete set of 37 genes that are usually found in metazoans. This is the smallest mitochondrial genome within all sequenced Acari and other Chelicerata, primarily due to the significant size reduction of protein coding genes (PCGs), a large rRNA gene, and the A + T-rich region. The mitochondrial gene order for <it>P. citri </it>is the same as those for <it>P. ulmi </it>and <it>Tetranychus urticae</it>, but distinctly different from other Acari by a series of gene translocations and/or inversions. The majority of the <it>P. citri </it>mitochondrial genome has a high A + T content (85.28%), which is also reflected by AT-rich codons being used more frequently, but exhibits a positive GC-skew (0.03). The Acari mitochondrial <it>nad1 </it>exhibits a faster amino acid substitution rate than other genes, and the variation of nucleotide substitution patterns of PCGs is significantly correlated with the G + C content. Most tRNA genes of <it>P. citri </it>are extremely truncated and atypical (44-65, 54.1 ± 4.1 bp), lacking either the T- or D-arm, as found in <it>P. ulmi</it>, <it>T. urticae</it>, and other Acariform mites.</p> <p>Conclusions</p> <p>The <it>P. citri </it>mitochondrial gene order is markedly different from those of other chelicerates, but is conserved within the family Tetranychidae indicating that high rearrangements have occurred after Tetranychidae diverged from other Acari. Comparative analyses suggest that the genome size, gene order, gene content, codon usage, and base composition are strongly variable among Acari mitochondrial genomes. While extremely small and unusual tRNA genes seem to be common for Acariform mites, further experimental evidence is needed.</p

    Development and Evaluation of Microsatellite Markers in Tetranychus truncatus Ehara (Acari: Tetranychidae)

    No full text

    Diapause characteristics of two species of tetranychid mites (Acari : Tetranychidae) in southern Japan and Taiwan

    No full text
    As in other Tetranychus species, both T kanzawai and T urticae undergo reproductive diapause induced by short-days and low temperatures. This study compares the diapause characteristics of populations of these two species from Taiwan with those from Kagoshima (southern Japan) and the Okinawa islands (southwestern islands). Our previous study (Takafuji et al., 2001, Appl. Entomol. Zool. 36: 177-184) showed that most T kanzawai populations from Kagoshima exhibited more than 90% diapause at 15degreesC-9L15D, but the incidence of diapause in populations from the Okinawa islands was very low, and some exhibited no diapause even at 15degreesC. The present study shows that populations from central Taiwan, including those from the lowlands, exhibited a lower incidence of diapause than populations from Kagoshima, but a higher incidence than populations from the Okinawa islands. These results imply that the gene flow among populations in the lowlands and mountains maintains a higher incidence of diapause in Taiwan, but the diapause characteristic may have been eliminated by warm temperatures on the Okinawa islands, on which there are no high mountains. On the other hand, all populations of T urticae from Kagoshima, Okinawa and Taiwan similarly exhibited a very low incidence of diapause

    Phylogenetic relationship between Dermanyssus gallinae populations in European countries based on mitochondrial COI gene sequences

    No full text
    Phylogenetic analysis of Dermanyssus gallinae mites originating from UK, France and Italy was performed using partial amplification of the mitochondrial COI gene. Results showed that UK samples reveal the greatest variation and diversity and are linked to one of the French populations highlighting North–South genetic transitions in European red mite populations. Intra-farm variations between mite samples highlighted the diversity between national populations and possibly its origin from the different chemical strategies used in each country
    corecore