13,425 research outputs found

    Cryogenic masers

    Get PDF
    Various factors affecting the frequency stability of hydrogen masers are described and related to maser design parameters. The long-term frequency stability of a hydrogen maser is limited by the mechanical stability of the cavity, and the magnitudes of the wall relaxation, spin exchange, and recombination rates which affect the Q of the line. Magnetic resonance studies of hydrogen atoms at temperatures below 1 K and in containers coated with liquid helium films demonstrated that cryogenic masers may allow substantial improvements in all of these parameters. In particular the thermal expansion coefficients of most materials are negligible at 1 K. Spin exchange broadening is three orders of magnitude smaller at 1 K than at room temperature, and the recombination and wall relaxation rates are negligible at 0.52 K where the frequency shift due to the 4 He-coated walls of the container has a broad minimum as a function of temperature. Other advantages of the helium-cooled maser result from the high purity, homogeneity, and resilence of helium-film-coated walls and the natural compatibility of the apparatus with helium-cooled amplifiers

    Diffusion of Nonequilibrium Quasiparticles in a Cuprate Superconductor

    Full text link
    We report a transport study of nonequilibrium quasiparticles in a high-Tc cuprate superconductor using the transient grating technique. Low-intensity laser excitation (at photon energy 1.5 eV) was used to introduce a spatially periodic density of quasiparticles into a high-quality untwinned single crystal of YBa2Cu3O6.5. Probing the evolution of the initial density through space and time yielded the quasiparticle diffusion coefficient, and both inelastic and elastic scattering rates. The technique reported here is potentially applicable to precision measurement of quasiparticle dynamics, not only in cuprate superconductors, but in other electronic systems as well.Comment: 5 pages, 4 figure

    New insights into the supression of plant pathogenic fungus (Phytophthora cinnamomi) by compost leachates

    Get PDF
    Use of compost as a soil conditioner and low-grade fertiliser is gaining popularity worldwide (Epstein, 1997). Compost not only adds plant nutrients to the soil, but also improves physical properties of soil such as buffering capacity, cation exchange capacity and water holding capacity. In addition to these benefits, compost can also suppress plant diseases caused by Phytophthora cinnamomi (Hoitink et al., 1977), Pythium aphanidermatum (Mandelbaum and Hadar, 1990), Rhizoctonia solani and Sclerotium rolfoii (Gorodecki and Hadar, 1990). Irwin et al., (1995) reported that the diseases caused by P. cinnamomi are directly responsible for considerable economic losses in many horticultural, ornamental and forestry industries throughout Australia. Phytophthora spp. continue to be the focus of attention of many researchers due to the diversity of P. cinnamomi-host interactions and their potential economic impact on a wide range of industries. The practise of using methyl bromide and other chemicals for disinfection of soil is widespread (Trill as et al., 2002). However, the use of methyl bromide and other chemicals is phased out in the USA and Europe. The suppression of soil-borne plant fungus by composts produced from tree barks (Spencer et al., 1982) and municipal solid wastes is well documented (Trill as et al., 2002). Composts that suppress plant disease have been extensively described and are used in greenhouse production systems (Lazarovitis et aI, 2001). However, most studies have focused on compo sting different types of materials and their effect on fungal pathogens inhibition rather than compo sting conditions that may produce suppressive composts. An objective of this study was to investigate the role of moisture, aeration and compost maturity in enhancing the inhibition effect of compost on the plant pathogen P. cinnamomi. A further objective was to generate an increased understanding of the mechanism of growth inhibition

    Photocatalytic production of organic compounds from CO and H2O in a simulated Martian atmosphere

    Get PDF
    [14C]CO2 and [14C]organic compounds are formed when a mixture of [14C]CO and water vapor diluted in [12C]CO2 or N2 is irradiated with ultraviolet light in the presence of soil or pulverized vycor substratum. The [14C]CO2 is recoverable from the gas phase, the [14C]organic products from the substratum. Three organic products have been tentatively identified as formaldehyde, acetaldehyde, and glycolic acid. The relative yields of [14C]CO2 and [14C]organics are wavelength- and surface-dependent. Conversion of CO to CO2 occurs primarily at wavelengths shorter than 2000 angstrom, apparently involves the photolysis of water, and is inhibited by increasing amounts of vycor substratum. Organic formation occurs over a broad spectral range below 3000 angstrom and increases with increasing amounts of substratum. It is suggested that organic synthesis results from adsorption of CO and H2O on surfaces, with excitation of one or both molecules occurring at wavelengths longer than those absorbed by the free gases. This process may occur on Mars and may have been important on the primitive earth

    Detection of moisture and moisture related phenomena from Skylab

    Get PDF
    There are no author-identified significant results in this report

    Photoinduced Changes of Reflectivity in Single Crystals of YBa2Cu3O6.5 (Ortho II)

    Full text link
    We report measurements of the photoinduced change in reflectivity of an untwinned single crystal of YBa2Cu3O6.5 in the ortho II structure. The decay rate of the transient change in reflectivity is found to decrease rapidly with decreasing temperature and, below Tc, with decreasing laser intensity. We interpret the decay as a process of thermalization of antinodal quasiparticles, whose rate is determined by an inelastic scattering rate of quasiparticle pairs.Comment: 4 pages, 4 figure

    The development of a model to infer precipitation from microwave measurements

    Get PDF
    To permit the inference of precipitation amounts from radiometric measurements, a radiative interaction model was developed. This model uses a simple computational scheme to determine the effects of rain upon brightness temperatures and can be used with a statistical inversion procedure to invert for rain rate. Precipitating cloud models was also developed and used with the microwave model for frequencies of 19.35 and 37 GHz to determine the variability of the microwave-rain rate relationship on a global and seasonal basis
    corecore