534 research outputs found

    Two-photon transitions in primordial hydrogen recombination

    Full text link
    The subject of cosmological hydrogen recombination has received much attention recently because of its importance to predictions for and cosmological constraints from CMB observations. While the central role of the two-photon decay 2s->1s has been recognized for many decades, high-precision calculations require us to consider two-photon decays from the higher states ns,nd->1s (n>=3). Simple attempts to include these processes in recombination calculations have suffered from physical problems associated with sequences of one-photon decays, e.g. 3d->2p->1s, that technically also produce two photons. These correspond to resonances in the two-photon spectrum that are optically thick, necessitating a radiative transfer calculation. We derive the appropriate equations, develop a numerical code to solve them, and verify the results by finding agreement with analytic approximations to the radiative transfer equation. The related processes of Raman scattering and two-photon recombination are included using similar machinery. Our results show that early in recombination the two-photon decays act to speed up recombination, reducing the free electron abundance by 1.3% relative to the standard calculation at z=1300. However we find that some photons between Ly-alpha and Ly-beta are produced, mainly by 3d->1s two-photon decay and 2s->1s Raman scattering. At later times these photons redshift down to Ly-alpha, excite hydrogen atoms, and act to slow recombination. Thus the free electron abundance is increased by 1.3% relative to the standard calculation at z=900. The implied correction to the CMB power spectrum is neligible for the recently released WMAP and ACBAR data, but at Fisher matrix level will be 7 sigma for Planck. [ABRIDGED]Comment: Matches PRD accepted version. 28 pages, 12 figure

    Handwritten digit recognition by bio-inspired hierarchical networks

    Full text link
    The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%

    Spectral Simplicity of Apparent Complexity, Part I: The Nondiagonalizable Metadynamics of Prediction

    Full text link
    Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question---correlation, predictability, predictive cost, observer synchronization, and the like---induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II, to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.Comment: 24 pages, 3 figures, 4 tables; current version always at http://csc.ucdavis.edu/~cmg/compmech/pubs/sdscpt1.ht

    Identifying Women at High Risk of 90 Day Death after Elective Open Abdominal Aortic Aneurysm Repair:A Multicentre Case Control Study

    Get PDF
    Objective: The aim of this study was to identify risk factors for 90 day death after elective open surgical repair (OSR) of abdominal aortic aneurysms (AAAs) in women.Methods: This was a multicentre case control study. The nationwide Dutch Surgical Aneurysm Audit registry (2013–2019) was solely used to identify women who underwent elective OSR as eligible patients. Data for this study were subsequently collected from the patients’ medical files. Women with AAA were included and those who died (cases) were compared with those who survived (controls) 90 days after surgery. Inflammatory, mycotic, or symptomatic or ruptured AAA were excluded. The association between pre- and peri-operative risk factors and death was assessed by logistic regression analysis in the whole sample and after matching cases to controls of the same age at the time of repair. Mesenteric artery patency was also assessed on pre-operative computed tomography and used in the analysis.Results: In total, 266 patients (30 cases and 236 controls) from 21 hospitals were included. Cases were older (median [interquartile range; IQR] 75 years [71, 78.3] vs. 71 years [66, 77]; p =.002) and more often had symptomatic peripheral arterial disease (PAD) (14/29 [48%] vs. 49/227 [22%]; p =.002). Intra-operative blood loss (median [IQR] 1.6 L [1.1, 3.0] vs. 1.2 L [0.7, 1.8]), acute myocardial infarction (AMI) (10/30 [33%] vs. 8/236 [3%]), renal failure (17/30 [57%] vs. 33/236 [14%]), and bowel ischaemia (BI) (17/29 [59%] vs. 12/236 [5%]) were more prevalent among cases. Older age (odds ratio [OR] 1.11, 95% confidence interval [CI] 1.03–1.19) and PAD (OR 3.91, 95% CI 1.57–9.74) were associated with death. Multivariable analysis demonstrated that, after adjustment for age, AMI (OR 9.34, 95% CI 1.66–52.4) and BI (OR 35.6, 95% CI 3.41–370) were associated with death. Superior mesenteric artery stenosis of &gt;70% had a clinically relevant association with BI (OR 5.23, 95% CI 1.43–19.13; p =.012).Conclusion: Age, symptomatic PAD, AMI, and BI were risk factors for death after elective OSR in women. The association between a &gt;70% SMA stenosis and BI may call for action in selected cases.</p

    Evaluation of a 3D surface imaging system for deep inspiration breath-hold patient positioning and intra-fraction monitoring

    Get PDF
    PURPOSE: To determine the accuracy of a surface guided radiotherapy (SGRT) system for positioning of breast cancer patients in breath-hold (BH) with respect to cone-beam computed tomography (CBCT). Secondly, to evaluate the thorax position stability during BHs with SGRT, when using an air-volume guidance system.METHODS AND MATERIALS: Eighteen left-sided breast cancer patients were monitored with SGRT during CBCT and treatment, both in BH. CBCT scans were matched on the target volume and the patient surface. The setup error differences were evaluated, including with linear regression analysis. The intra-fraction variability and stability of the air-volume guided BHs were determined from SGRT measurements. The variability was determined from the maximum difference between the different BH levels within one treatment fraction. The stability was determined from the difference between the start and end position of each BH.RESULTS: SGRT data correlated well with CBCT data. The correlation was stronger for surface-to-CBCT (0.61) than target volume-to-CBCT (0.44) matches. Systematic and random setup error differences were ≤ 2 mm in all directions. The 95% limits of agreement (mean ± 2SD) were 0.1 ± 3.0, 0.6 ± 4.1 and 0.4 ± 3.4 mm in the three orthogonal directions, for the surface-to-CBCT matches. For air-volume guided BHs, the variability detected with SGRT was 2.2, 2.8 and 2.3 mm, and the stability - 1.0, 2.1 and 1.5 mm, in three orthogonal directions. Furthermore, the SGRT system could detect unexpected patient movement, undetectable by the air-volume BH system.CONCLUSION: With SGRT, left-sided breast cancer patients can be positioned and monitored continuously to maintain position errors within 5 mm. Low intra-fraction variability and good stability can be achieved with the air-volume BH system, however, additional patient position information is available with SGRT, that cannot be detected with air-volume BH systems.</p

    Amplification by stochastic interference

    Full text link
    A new method is introduced to obtain a strong signal by the interference of weak signals in noisy channels. The method is based on the interference of 1/f noise from parallel channels. One realization of stochastic interference is the auditory nervous system. Stochastic interference may have broad potential applications in the information transmission by parallel noisy channels

    Deterministic secure direct communication using GHZ states and swapping quantum entanglement

    Full text link
    We present a deterministic secure direct communication scheme via entanglement swapping, where a set of ordered maximally entangled three-particle states (GHZ states), initially shared by three spatially separated parties, Alice, Bob and Charlie, functions as a quantum information channel. After ensuring the safety of the quantum channel, Alice and Bob apply a series local operations on their respective particles according to the tripartite stipulation and the secret message they both want to send to Charlie. By three Alice, Bob and Charlie's Bell measurement results, Charlie is able to infer the secret messages directly. The secret messages are faithfully transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ states without revealing any information to a potential eavesdropper. Since there is not a transmission of the qubits carrying the secret message between any two of them in the public channel, it is completely secure for direct secret communication if perfect quantum channel is used.Comment: 9 pages, no figur

    Local alignment of generalized k-base encoded DNA sequence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA sequence comparison is a well-studied problem, in which two DNA sequences are compared using a weighted edit distance. Recent DNA sequencing technologies however observe an encoded form of the sequence, rather than each DNA base individually. The encoded DNA sequence may contain technical errors, and therefore encoded sequencing errors must be incorporated when comparing an encoded DNA sequence to a reference DNA sequence.</p> <p>Results</p> <p>Although two-base encoding is currently used in practice, many other encoding schemes are possible, whereby two ore more bases are encoded at a time. A generalized <it>k</it>-base encoding scheme is presented, whereby feasible higher order encodings are better able to differentiate errors in the encoded sequence from true DNA sequence variants. A generalized version of the previous two-base encoding DNA sequence comparison algorithm is used to compare a <it>k</it>-base encoded sequence to a DNA reference sequence. Finally, simulations are performed to evaluate the power, the false positive and false negative SNP discovery rates, and the performance time of <it>k</it>-base encoding compared to previous methods as well as to the standard DNA sequence comparison algorithm.</p> <p>Conclusions</p> <p>The novel generalized <it>k</it>-base encoding scheme and resulting local alignment algorithm permits the development of higher fidelity ligation-based next generation sequencing technology. This bioinformatic solution affords greater robustness to errors, as well as lower false SNP discovery rates, only at the cost of computational time.</p
    • …
    corecore