683 research outputs found
The Pivotal Role of Causality in Local Quantum Physics
In this article an attempt is made to present very recent conceptual and
computational developments in QFT as new manifestations of old and well
establihed physical principles. The vehicle for converting the
quantum-algebraic aspects of local quantum physics into more classical
geometric structures is the modular theory of Tomita. As the above named
laureate to whom I have dedicated has shown together with his collaborator for
the first time in sufficient generality, its use in physics goes through
Einstein causality. This line of research recently gained momentum when it was
realized that it is not only of structural and conceptual innovative power (see
section 4), but also promises to be a new computational road into
nonperturbative QFT (section 5) which, picturesquely speaking, enters the
subject on the extreme opposite (noncommutative) side.Comment: This is a updated version which has been submitted to Journal of
Physics A, tcilatex 62 pages. Adress: Institut fuer Theoretische Physik
FU-Berlin, Arnimallee 14, 14195 Berlin presently CBPF, Rua Dr. Xavier Sigaud
150, 22290-180 Rio de Janeiro, Brazi
FE modelling of bainitic steels using crystal plasticity
International audienceModels classically used to describe the probability of brittle fracture in nuclear power plants are written on a macroscale. Physical phenomena are not naturally captured by this type of approach, so that the application of the models far from their identification domain (temperature history, loading path) may become questionable. To improve the quality of the prediction of resistance and life time, microstructural information, describing the heterogeneous character of the material and its deformation mechanisms has to be taken into consideration. The purpose of the paper is to propose a model able to describe local stress and strain fields in 16MND5 bainitic steel. These data will then be used as critical variables for multiscale failure models. The microstructure of 16MND5 steel is made of bainitic packets coming from former austenitic grains, which are not randomly oriented. Knowing the macroscopic stress is thus not sufficient to describe the stress-strain state in ferrite. An accurate model must take into account the actual microstructure, in order to provide realistic local stress and strain fields. After providing some observations and the analysis of the bainitic microstructure, the paper shows a quantitative model of the morphology and the crystallography, then a finite element analysis involving crystal plasticity
Tightness of slip-linked polymer chains
We study the interplay between entropy and topological constraints for a
polymer chain in which sliding rings (slip-links) enforce pair contacts between
monomers. These slip-links divide a closed ring polymer into a number of
sub-loops which can exchange length between each other. In the ideal chain
limit, we find the joint probability density function for the sizes of segments
within such a slip-linked polymer chain (paraknot). A particular segment is
tight (small in size) or loose (of the order of the overall size of the
paraknot) depending on both the number of slip-links it incorporates and its
competition with other segments. When self-avoiding interactions are included,
scaling arguments can be used to predict the statistics of segment sizes for
certain paraknot configurations.Comment: 10 pages, 6 figures, REVTeX
Visualizing the Effects of rTMS in a Patient Sample: Small N vs. Group Level Analysis
The use of transcranial magnetic stimulation (TMS) to assess changes in cortical excitability is a tool used with increased prevalence in healthy and impaired populations. One factor of concern with this technique is how to achieve adequate statistical power given constraints of a small number of subjects and variability in responses. This paper compares a single pulse excitability measure using traditional group-level statistics vs single subject analyses in a patient population of subjects with focal hand dystonia, pre and post repetitive TMS (rTMS). Results show significant differences in cortical excitability for 4/5 subjects using a split middle line analysis on plots of individual subject data. Group level statistics (ANOVA), however, did not detect any significant findings. The consideration of single subject statistics for TMS excitability measures may assist researchers in describing the variably of rTMS outcome measures
Unbounded violation of tripartite Bell inequalities
We prove that there are tripartite quantum states (constructed from random
unitaries) that can lead to arbitrarily large violations of Bell inequalities
for dichotomic observables. As a consequence these states can withstand an
arbitrary amount of white noise before they admit a description within a local
hidden variable model. This is in sharp contrast with the bipartite case, where
all violations are bounded by Grothendieck's constant. We will discuss the
possibility of determining the Hilbert space dimension from the obtained
violation and comment on implications for communication complexity theory.
Moreover, we show that the violation obtained from generalized GHZ states is
always bounded so that, in contrast to many other contexts, GHZ states do in
this case not lead to extremal quantum correlations. The results are based on
tools from the theories of operator spaces and tensor norms which we exploit to
prove the existence of bounded but not completely bounded trilinear forms from
commutative C*-algebras.Comment: Substantial changes in the presentation to make the paper more
accessible for a non-specialized reade
Chronic non-specific low back pain - sub-groups or a single mechanism?
Copyright 2008 Wand and O'Connell; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain is a substantial health problem and has subsequently attracted a
considerable amount of research. Clinical trials evaluating the efficacy of a variety of interventions
for chronic non-specific low back pain indicate limited effectiveness for most commonly applied
interventions and approaches.
Discussion: Many clinicians challenge the results of clinical trials as they feel that this lack of
effectiveness is at odds with their clinical experience of managing patients with back pain. A
common explanation for this discrepancy is the perceived heterogeneity of patients with chronic
non-specific low back pain. It is felt that the effects of treatment may be diluted by the application
of a single intervention to a complex, heterogeneous group with diverse treatment needs. This
argument presupposes that current treatment is effective when applied to the correct patient.
An alternative perspective is that the clinical trials are correct and current treatments have limited
efficacy. Preoccupation with sub-grouping may stifle engagement with this view and it is important
that the sub-grouping paradigm is closely examined. This paper argues that there are numerous
problems with the sub-grouping approach and that it may not be an important reason for the
disappointing results of clinical trials. We propose instead that current treatment may be ineffective
because it has been misdirected. Recent evidence that demonstrates changes within the brain in
chronic low back pain sufferers raises the possibility that persistent back pain may be a problem of
cortical reorganisation and degeneration. This perspective offers interesting insights into the
chronic low back pain experience and suggests alternative models of intervention.
Summary: The disappointing results of clinical research are commonly explained by the failure of
researchers to adequately attend to sub-grouping of the chronic non-specific low back pain
population. Alternatively, current approaches may be ineffective and clinicians and researchers may
need to radically rethink the nature of the problem and how it should best be managed
An Introduction to Conformal Field Theory
A comprehensive introduction to two-dimensional conformal field theory is
given.Comment: 69 pages, LaTeX; references adde
The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?
The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
A network perspective on the topological importance of enzymes and their phylogenetic conservation
<p>Abstract</p> <p>Background</p> <p>A metabolic network is the sum of all chemical transformations or reactions in the cell, with the metabolites being interconnected by enzyme-catalyzed reactions. Many enzymes exist in numerous species while others occur only in a few. We ask if there are relationships between the phylogenetic profile of an enzyme, or the number of different bacterial species that contain it, and its topological importance in the metabolic network. Our null hypothesis is that phylogenetic profile is independent of topological importance. To test our null hypothesis we constructed an enzyme network from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We calculated three network indices of topological importance: the degree or the number of connections of a network node; closeness centrality, which measures how close a node is to others; and betweenness centrality measuring how frequently a node appears on all shortest paths between two other nodes.</p> <p>Results</p> <p>Enzyme phylogenetic profile correlates best with betweenness centrality and also quite closely with degree, but poorly with closeness centrality. Both betweenness and closeness centralities are non-local measures of topological importance and it is intriguing that they have contrasting power of predicting phylogenetic profile in bacterial species. We speculate that redundancy in an enzyme network may be reflected by betweenness centrality but not by closeness centrality. We also discuss factors influencing the correlation between phylogenetic profile and topological importance.</p> <p>Conclusion</p> <p>Our analysis falsifies the hypothesis that phylogenetic profile of enzymes is independent of enzyme network importance. Our results show that phylogenetic profile correlates better with degree and betweenness centrality, but less so with closeness centrality. Enzymes that occur in many bacterial species tend to be those that have high network importance. We speculate that this phenomenon originates in mechanisms driving network evolution. Closeness centrality reflects phylogenetic profile poorly. This is because metabolic networks often consist of distinct functional modules and some are not in the centre of the network. Enzymes in these peripheral parts of a network might be important for cell survival and should therefore occur in many bacterial species. They are, however, distant from other enzymes in the same network.</p
- …