6 research outputs found
Confronting Grand Challenges in Environmental Fluid Dynamics
Environmental fluid dynamics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be tackled, ranging from fundamental advances in understanding and modeling of stratified turbulence and consequent mixing, to applied studies of pollution transport in the ocean, atmosphere and urban environments. A workshop was organized in the Les Houches School of Physics in France in January 2019 with the objective of gathering leading figures in the field to produce a road map for the scientific community. Five subject areas were addressed: multiphase flow, stratified flow, ocean transport, atmospheric and urban transport, and weather and climate prediction. This article summarizes the discussions and outcomes of the meeting, with the intent of providing a resource for the community going forward
Confronting Grand Challenges in environmental fluid mechanics
Environmental fluid mechanics underlies a wealth of natural, industrial and,
by extension, societal challenges. In the coming decades, as we strive towards
a more sustainable planet, there are a wide range of grand challenge problems
that need to be tackled, ranging from fundamental advances in understanding and
modeling of stratified turbulence and consequent mixing, to applied studies of
pollution transport in the ocean, atmosphere and urban environments. A workshop
was organized in the Les Houches School of Physics in France in January 2019
with the objective of gathering leading figures in the field to produce a road
map for the scientific community. Five subject areas were addressed: multiphase
flow, stratified flow, ocean transport, atmospheric and urban transport, and
weather and climate prediction. This article summarizes the discussions and
outcomes of the meeting, with the intent of providing a resource for the
community going forward
The restorative role of annexin A1 at the blood–brain barrier
Annexin A1 is a potent anti-inflammatory molecule that has been extensively studied in the peripheral immune
system, but has not as yet been exploited as a therapeutic target/agent. In the last decade, we have undertaken the
study of this molecule in the central nervous system (CNS), focusing particularly on the primary interface between the
peripheral body and CNS: the blood–brain barrier. In this review, we provide an overview of the role of this molecule
in the brain, with a particular emphasis on its functions in the endothelium of the blood–brain barrier, and the protective
actions the molecule may exert in neuroinflammatory, neurovascular and metabolic disease. We focus on the
possible new therapeutic avenues opened up by an increased understanding of the role of annexin A1 in the CNS
vasculature, and its potential for repairing blood–brain barrier damage in disease and aging