13,093 research outputs found

    The Problem of Scheduling for the Linear Section of a Single-Track Railway with Independent Edges Orientations

    Full text link
    The paper is devoted to the problem of scheduling for the linear section of a single-track railway: how to organize the ow in both directions in the most efficient way. In this paper, the authors propose an algorithm for scheduling with independent edges orientations, examine the properties of this algorithm and perform the computational experiments

    Isobar Electroproduction as a Background from Interaction of Beams with Residual Gas at ϕ\phi-Factories

    Full text link
    It is shown that when beams interact with a residual gas at ϕ\phi-factories the reaction of the electroproduction of the Δ(1232)\Delta (1232) isobar proceeds vigorously. The isobar decay gives 107\sim 10^7 pions during an effective year of 10710^7 s per meter of a residual gas. These pions are emitted largely across the beam axis and have a resonance energy distribution with a peak nearby 265 MeV of a width close to 120 MeV in the isobar rest system. There are presented formulae for the distributions of the four-momentum transfer square, the angles, the energies and the momentum of the decay products, that is all required for the simulation of the process under consideration.Comment: 10 pages, revtex, 2 ps files of figures, two misprints are corrected (in Eqs. (5) and (7) π\pi is removed), English is improve

    Large-scale instability in a sheared nonhelical turbulence: formation of vortical structures

    Full text link
    We study a large-scale instability in a sheared nonhelical turbulence that causes generation of large-scale vorticity. Three types of the background large-scale flows are considered, i.e., the Couette and Poiseuille flows in a small-scale homogeneous turbulence, and the "log-linear" velocity shear in an inhomogeneous turbulence. It is known that laminar plane Couette flow and antisymmetric mode of laminar plane Poiseuille flow are stable with respect to small perturbations for any Reynolds numbers. We demonstrate that in a small-scale turbulence under certain conditions the large-scale Couette and Poiseuille flows are unstable due to the large-scale instability. This instability causes formation of large-scale vortical structures stretched along the mean sheared velocity. The growth rate of the large-scale instability for the "log-linear" velocity shear is much larger than that for the Couette and Poiseuille background flows. We have found a turbulent analogue of the Tollmien-Schlichting waves in a small-scale sheared turbulence. A mechanism of excitation of turbulent Tollmien-Schlichting waves is associated with a combined effect of the turbulent Reynolds stress-induced generation of perturbations of the mean vorticity and the background sheared motions. These waves can be excited even in a plane Couette flow imposed on a small-scale turbulence when perturbations of mean velocity depend on three spatial coordinates. The energy of these waves is supplied by the small-scale sheared turbulence.Comment: 12 pages, 14 figures, Phys. Rev. E, in pres

    Quantum state of an injected TROPO above threshold : purity, Glauber function and photon number distribution

    Full text link
    In this paper we investigate several properties of the full signal-idler-pump mode quantum state generated by a triply resonant non-degenerate Optical Parametric Oscillator operating above threshold, with an injected wave on the signal and idler modes in order to lock the phase diffusion process. We determine and discuss the spectral purity of this state, which turns out not to be always equal to 1 even though the three interacting modes have been taken into account at the quantum level. We have seen that the purity is essentially dependent on the weak intensity of the injected light and on an asymmetry of the synchronization. We then derive the expression of its total three-mode Glauber P-function, and calculate the joint signal-idler photon number probability distribution and investigate their dependence on the injection

    Position Sensitivity of LYCCA Time-of-Flight Detectors

    Get PDF

    Snow metamorphism: a fractal approach

    Full text link
    Snow is a porous disordered medium consisting of air and three water phases: ice, vapour and liquid. The ice phase consists of an assemblage of grains, ice matrix, initially arranged over a random load bearing skeleton. The quantitative relationship between density and morphological characteristics of different snow microstructures is still an open issue. In this work, a three-dimensional fractal description of density corresponding to different snow microstructure is put forward. First, snow density is simulated in terms of a generalized Menger sponge model. Then, a fully three-dimensional compact stochastic fractal model is adopted. The latter approach yields a quantitative map of the randomness of the snow texture, which is described as a three-dimensional fractional Brownian field with the Hurst exponent H varying as continuous parameter. The Hurst exponent is found to be strongly dependent on snow morphology and density. The approach might be applied to all those cases where the morphological evolution of snow cover or ice sheets should be conveniently described at a quantitative level

    Ion beam sputtering method for progressive reduction of nanostructures dimensions

    Full text link
    An ion beam based dry etching method has been developed for progressive reduction of dimensions of prefabricated nanostructures. The method has been successfully applied to aluminum nanowires and aluminum single electron transistors (SET). The method is based on removal of material from the structures when exposed to energetic argon ions and it was shown to be applicable multiple times to the same sample. The electrical measurements and samples imaging in between the sputtering sessions clearly indicated that the dimensions, i.e. cross-section of the nanowires and area of the tunnel junctions in SET, were progressively reduced without noticeable degradation of the sample structure. We were able to reduce the effective diameter of aluminum nanowires from ~65 nm down to ~30 nm, whereas the tunnel junction area has been reduced by 40 %
    corecore