292 research outputs found
Epigenetic regulation in neonatal ECFCs following intrauterine exposure to gestational diabetes
poster abstractGestational diabetes (GDM) complicates up to 10% of pregnancies. In addition to acute risks, the children of diabetic mothers have an increased risk of obesity, diabetes, and hypertension, starting in childhood. While the causes of this increased risk are unknown, previous studies in our lab have identified functional deficits in endothelial colony forming cells (ECFCs) isolated from the cord blood of GDM pregnancies. This study focused on identifying genes that have altered epigenetic modifications that result in abnormal mRNA and protein expression in ECFCs from the cord blood GDM pregnancies. The objective of this study was to identify mRNA expression and DNA methylation alterations in ECFCs that may help identify the causes of ECFC dysfunction following intrauterine exposure to GDM. ECFCs were obtained from control and GDM pregnancies. DNA, RNA, and protein samples were isolated in parallel from ECFCs. RNA microarray analysis using the Affymetrix Human 1.0 Gene Array was used to identify gene expression alterations in GDM ECFCs compared to control ECFCs. Genome-wide DNA methylation was assessed using an Infinium 450K Methylation Array for DNA samples at >450,000 CpG sites. Correlation analysis was performed to identify possible sites that have altered CpG methylation and RNA expression. RNA expression results were validated using qRT-PCR and western blotting. Bisulfite sequencing of genomic DNA from the ECFCs was performed to identify additional sites with altered methylation for regions not included in the DNA methylation array. Of the 28,000 genetic loci tested, 596 mRNAs were altered between control and GDM ECFCs (p<0.01). More stringent criteria identified 38 genes for further investigation by limiting analysis to genes that exhibited increased or decreased expression by at least 50%, with a p<0.01. PLAC8 was identified as being increased 5-fold by microarray analysis, a result which was confirmed in two cohorts by qRT-PCR and western blotting. Analysis of the methylation array and bisulfite sequencing results revealed 3 regions surrounding the transcriptional start site of PLAC8 gene whose CpG methylation negatively correlate with RNA expression in samples from control and GDM ECFCs. In contrast, a CpG island is fully unmethylated in both control and GDM ECFCs. The discovery of CpG sites whose methylation correlates with PLAC8 mRNA expression in ECFCs is consistent with the hypothesis that intrauterine exposure to GDM results in epigenetic changes. Analysis of methylation at this site could be used as a biomarker for children of mothers with GDM who may be at risk for disease later in life. Using bisulfite pyrosequencing, we are currently developing assays to quickly determine if methylation of the PLAC8 putative promoter region is altered in cord blood mononuclear cells obtained from GDM or healthy control pregnancies. We are also investigating the role of methylation in regulating PLAC8 RNA expression, determining if there is altered histone modifications and transcription factor binding in these regions, and examining other genes that may comprise a molecular signature of ECFC dysfunction
Precision measurements of of the proton and the deuteron with 6 GeV electrons
The inclusive polarized structure functions of the proton and deuteron, g1p
and g1d, were measured with high statistical precision using polarized 6 GeV
electrons incident on a polarized ammonia target in Hall B at Jefferson
Laboratory. Electrons scattered at lab angles between 18 and 45 degrees were
detected using the CEBAF Large Acceptance Spectrometer (CLAS). For the usual
DIS kinematics, Q^2>1 GeV^2 and the final-state invariant mass W>2 GeV, the
ratio of polarized to unpolarized structure functions g1/F1 is found to be
nearly independent of Q^2 at fixed x. Significant resonant structure is
apparent at values of W up to 2.3 GeV. In the framework of perturbative QCD,
the high-W results can be used to better constrain the polarization of quarks
and gluons in the nucleon, as well as high-twist contributions
Measurement of Exclusive Electroproduction Structure Functions and their Relationship to Transversity GPDs
Exclusive electroproduction at a beam energy of 5.75 GeV has been
measured with the Jefferson Lab CLAS spectrometer. Differential cross sections
were measured at more than 1800 kinematic values in , , , and
, in the range from 1.0 to 4.6 GeV,\ up to 2 GeV,
and from 0.1 to 0.58. Structure functions and were extracted as functions of for each of
17 combinations of and . The data were compared directly with two
handbag-based calculations including both longitudinal and transversity GPDs.
Inclusion of only longitudinal GPDs very strongly underestimates and fails to account for and ,
while inclusion of transversity GPDs brings the calculations into substantially
better agreement with the data. There is very strong sensitivity to the
relative contributions of nucleon helicity flip and helicity non-flip
processes. The results confirm that exclusive electroproduction offers
direct experimental access to the transversity GPDs.Comment: 6 pages, 2 figure
Transverse Polarization of in Photoproduction on a Hydrogen Target in CLAS
Experimental results on the hyperon transverse polarization
in photoproduction on a hydrogen target using the CLAS detector at Jefferson
laboratory are presented. The was reconstructed in the
exclusive reaction via the
decay mode. The was reconstructed in the
invariant mass of two oppositely charged pions with the identified in
the missing mass of the detected final state. Experimental data
were collected in the photon energy range = 1.0-3.5 GeV
( range 1.66-2.73 GeV). We observe a large negative polarization of
up to 95%. As the mechanism of transverse polarization of hyperons produced in
unpolarized photoproduction experiments is still not well understood, these
results will help to distinguish between different theoretical models on
hyperon production and provide valuable information for the searches of missing
baryon resonances.Comment: pages 1
Measurement of the nuclear multiplicity ratio for hadronization at CLAS
The influence of cold nuclear matter on lepto-production of hadrons in
semi-inclusive deep inelastic scattering is measured using the CLAS detector in
Hall B at Jefferson Lab and a 5.014 GeV electron beam. We report the
multiplicity ratios for targets of C, Fe, and Pb relative to deuterium as a
function of the fractional virtual photon energy transferred to the
and the transverse momentum squared of the . We find that the
multiplicity ratios for are reduced in the nuclear medium at high
and low , with a trend for the transverse momentum to be
broadened in the nucleus for large .Comment: Submitted to Phys. Lett.
A Bayesian analysis of pentaquark signals from CLAS data
We examine the results of two measurements by the CLAS collaboration, one of
which claimed evidence for a pentaquark, whilst the other found no
such evidence. The unique feature of these two experiments was that they were
performed with the same experimental setup. Using a Bayesian analysis we find
that the results of the two experiments are in fact compatible with each other,
but that the first measurement did not contain sufficient information to
determine unambiguously the existence of a . Further, we suggest a
means by which the existence of a new candidate particle can be tested in a
rigorous manner.Comment: 5 pages, 3 figure
A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n
Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of
the nuclear physics community for many years. They are an important part of the
nuclear wavefunction, accounting for almost all of the high-momentum strength.
They are closely related to the EMC effect. While their overall probability has
been measured, measuring their momentum distributions is more difficult. In
order to determine the best configuration for studying SRC momentum
distributions, we measured the He reaction, looking at events
with high momentum protons ( GeV/c) and a low momentum neutron
( GeV/c). We examined two angular configurations: either both protons
emitted forward or one proton emitted forward and one backward (with respect to
the momentum transfer, ). The measured relative momentum distribution
of the events with one forward and one backward proton was much closer to the
calculated initial-state relative momentum distribution, indicating that
this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates
minor corrections in response to referee comment
- …