10 research outputs found

    Trypan Blue Dye Enters Viable Cells Incubated with the Pore-Forming Toxin HlyII of Bacillus cereus

    Get PDF
    Trypan blue is a dye that has been widely used for selective staining of dead tissues or cells. Here, we show that the pore-forming toxin HlyII of Bacillus cereus allows trypan blue staining of macrophage cells, despite the cells remaining viable and metabolically active. These findings suggest that the dye enters viable cells through the pores. To our knowledge, this is the first demonstration that trypan blue may enter viable cells. Consequently, the use of trypan blue staining as a marker of vital status should be interpreted with caution. The blue coloration does not necessarily indicate cell lysis, but may rather indicate pore formation in the cell membranes and more generally increased membrane permeability

    The PlcR Virulence Regulon of Bacillus cereus

    Get PDF
    PlcR is a Bacillus cereus transcriptional regulator, which activates gene expression by binding to a nucleotidic sequence called the ‘PlcR box’. To build a list of all genes included in the PlcR regulon, a consensus sequence was identified by directed mutagenesis. The reference strain ATCC14579 sequenced genome was searched for occurrences of this consensus sequence to produce a virtual regulon. PlcR control of these genes was confirmed by comparing gene expression in the reference strain and its isogenic Δ-plcR strain using DNA microarrays, lacZ fusions and proteomics methods. The resulting list included 45 genes controlled by 28 PlcR boxes. Forty of the PlcR controlled proteins were exported, of which 22 were secreted in the extracellular medium and 18 were bound or attached to cell wall structures (membrane or peptidoglycan layer). The functions of these proteins were related to food supply (phospholipases, proteases, toxins), cell protection (bacteriocins, toxins, transporters, cell wall biogenesis) and environment-sensing (two-component sensors, chemotaxis proteins, GGDEF family regulators). Four genes coded for cytoplasmic regulators. The PlcR regulon appears to integrate a large range of environmental signals, including food deprivation and self cell-density, and regulate the transcription of genes designed to overcome obstacles that hinder B. cereus growth within the host: food supply, host barriers, host immune defenses, and competition with other bacterial species. PlcR appears to be a key component in the efficient adaptation of B. cereus to its host environment

    Temperature-dependent production of various PlcR-controlled virulence factors in Bacillus weihenstephanensis strain KBAB4

    No full text
    The Bacillus cereus sensu lato complex has recently been divided into several phylogenetic groups with clear differences in growth temperature range. However, only a few studies have investigated the actual pathogenic potential of the psychrotolerant strains of the B. cereus group at low temperature, and little information is available concerning gene expression at low temperature. We found that vegetative cells of the psychrotolerant B. weihenstephanensis strain KBAB4 were pathogenic against the model insect Galleria mellonella at 15°C but not at 30°C. A similar temperature-dependent difference also was observed for the supernatant, which was cytotoxic to Vero epithelial cell lines and to murine macrophage J774 cells at 15°C but not at 30°C. We therefore determined the effect of low temperature on the production of various proteins putatively involved in virulence using two-dimensional protein gel electrophoresis, and we showed that the production of the Hbl enterotoxin and of two proteases, NprB and NprP2, was greater at a growth temperature of 15°C than at 30°C. The quantification of the mRNA levels for these virulence genes by real-time quantitative PCR at both temperatures showed that there was also more mRNA present at 15°C than at 30°C. We also found that at 15°C, hbl mRNA levels were maximal in the mid- to late exponential growth phase. In conclusion, we found that the higher virulence of the B. cereus KBAB4 strain at low temperature was accompanied by higher levels of the production of various known PlcR-controlled virulence factors and by a higher transcriptional activity of the corresponding genes
    corecore