979 research outputs found

    Cooling and trapping of ultra-cold strontium isotopic mixtures

    Get PDF
    We present the simultaneous cooling and trapping of an isotopic mixture in a magneto-optical trap and we describe the transfer of the mixture into a conservative, far-off resonant dipole trap. The mixture is prepared with a new technique that applies to intermediate and heavy alkaline earth like atoms. In this work, 88Sr and 86Sr are simultaneously loaded first into the magneto-optical trap operated on the 1S0-3P1 spin-forbidden line at 689 nm, and then transferred into the dipole trap. We observe fast inter-species thermalization in the dipole trap which allows one to set a lower bound on the 88Sr-86Sr elastic cross section

    Non-equilibrium dynamics of spin facilitated glass models

    Full text link
    We consider the dynamics of spin facilitated models of glasses in the non-equilibrium aging regime following a sudden quench from high to low temperatures. We briefly review known results obtained for the broad class of kinetically constrained models, and then present new results for the behaviour of the one-spin facilitated Fredrickson-Andersen and East models in various spatial dimensions. The time evolution of one-time quantities, such as the energy density, and the detailed properties of two-time correlation and response functions are studied using a combination of theoretical approaches, including exact mappings of master operators and reductions to integrable quantum spin chains, field theory and renormalization group, and independent interval and timescale separation methods. The resulting analytical predictions are confirmed by means of detailed numerical simulations. The models we consider are characterized by trivial static properties, with no finite temperature singularities, but they nevertheless display a surprising variety of dynamic behaviour during aging, which can be directly related to the existence and growth in time of dynamic lengthscales. Well-behaved fluctuation-dissipation ratios can be defined for these models, and we study their properties in detail. We confirm in particular the existence of negative fluctuation-dissipation ratios for a large number of observables. Our results suggest that well-defined violations of fluctuation-dissipation relations, of a purely dynamic origin and unrelated to the thermodynamic concept of effective temperatures, could in general be present in non-equilibrium glassy materials.Comment: 72 pages, invited contribution to special issue of JSTAT on "Principles of Dynamics of Nonequilibrium Systems" (Programme at Newton Institute Cambridge). v2: New data added to Figs. 11, 23, 24, new Fig. 26 on East model in d=3, minor improvements to tex

    Rotating Casimir systems: magnetic-field-enhanced perpetual motion, possible realization in doped nanotubes, and laws of thermodynamics

    Get PDF
    Recently, we have demonstrated that for a certain class of Casimir-type systems ("devices") the energy of zero-point vacuum fluctuations reaches its global minimum when the device rotates about a certain axis rather than remains static. This rotational vacuum effect may lead to the emergence of permanently rotating objects provided the negative rotational energy of zero-point fluctuations cancels the positive rotational energy of the device itself. In this paper, we show that for massless electrically charged particles the rotational vacuum effect should be drastically (astronomically) enhanced in the presence of a magnetic field. As an illustration, we show that in a background of experimentally available magnetic fields the zero-point energy of massless excitations in rotating torus-shaped doped carbon nanotubes may indeed overwhelm the classical energy of rotation for certain angular frequencies so that the permanently rotating state is energetically favored. The suggested "zero-point driven" devices -- which have no internally moving parts -- correspond to a perpetuum mobile of a new, fourth kind: They do not produce any work despite the fact that their equilibrium (ground) state corresponds to a permanent rotation even in the presence of an external environment. We show that our proposal is consistent with the laws of thermodynamics.Comment: 19 pages, 11 figures; v2: extended discussions; analogy with split-ring metamaterials stressed; comments are always welcom

    Stress-driven instability in growing multilayer films

    Full text link
    We investigate the stress-driven morphological instability of epitaxially growing multilayer films, which are coherent and dislocation-free. We construct a direct elastic analysis, from which we determine the elastic state of the system recursively in terms of that of the old states of the buried layers. In turn, we use the result for the elastic state to derive the morphological evolution equation of surface profile to first order of perturbations, with the solution explicitly expressed by the growth conditions and material parameters of all the deposited layers. We apply these results to two kinds of multilayer structures. One is the alternating tensile/compressive multilayer structure, for which we determine the effective stability properties, including the effect of varying surface mobility in different layers, its interplay with the global misfit of the multilayer film, and the influence of asymmetric structure of compressive and tensile layers on the system stability. The nature of the asymmetry properties found in stability diagrams is in agreement with experimental observations. The other multilayer structure that we study is one composed of stacked strained/spacer layers. We also calculate the kinetic critical thickness for the onset of morphological instability and obtain its reduction and saturation as number of deposited layers increases, which is consistent with recent experimental results. Compared to the single-layer film growth, the behavior of kinetic critical thickness shows deviations for upper strained layers.Comment: 27 pages, 11 figures; Phys. Rev. B, in pres
    • …
    corecore