1,059 research outputs found

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Temporal distortion of annual modulation at low recoil energies

    Get PDF
    We show that the main features of the annual modulation of the signal expected in a WIMP direct detection experiment, i.e. its sinusoidal dependence with time, the occurrence of its maxima and minima during the year and (under some circumstances) even the one-year period, may be affected by relaxing the isothermal sphere hypothesis in the description of the WIMP velocity phase space. The most relevant effect is a distortion of the time-behaviour at low recoil energies for anisotropic galactic halos. While some of these effects turn out to be relevant at recoil energies below the current detector thresholds, some others could already be measurable, although some degree of tuning between the WIMP mass and the experimental parameters would be required. Either the observation or non-observation of these effects could provide clues on the phase space distribution of our galactic halo.Comment: 4 pages, 4 figures, typeset with ReVTeX4. The paper may also be found at http://www.to.infn.it/~fornengo/papers/distortion.ps.g

    Observing the Structure of the Landscape with the CMB Experiments

    Full text link
    Assuming that inflation happened through a series of tunneling in the string theory landscape, it is argued that one can determine the structure of vacua using precise measurements of the scalar spectral index and tensor perturbations at large scales. It is shown that for a vacuum structure where the energy gap between the minima is constant, i.e. ϵi=imf4\epsilon_i=i m_f^4, one obtains the scalar spectral index, nsn_s, to be 0.9687\simeq 0.9687, for the modes that exit the horizon 60 e-folds before the end of inflation. Alternatively, for a vacuum structure in which the energy gap increases linearly with the vacuum index, i.e. ϵi=i22mf4\epsilon_i=\frac{i^2}{2} m_f^4, nsn_s turns out to be 0.9614\simeq 0.9614. Both these two models are motivated within the string theory landscape using flux-compactification and their predictions for scalar spectral index are compatible with WMAP results. For both these two models, the results for the scalar spectral index turn out to be independent of mfm_f. Nonetheless, assuming that inflation started at Planckian energies and that there had been successful thermalization at each step, one can constrain mf<2.6069×105mPm_f<2.6069\times 10^{-5} m_P and mf<6.5396×107mPm_f<6.5396\times 10^{-7} m_P in these two models, respectively. Violation of the single-field consistency relation between the tensor and scalar spectra is another prediction of chain inflation models. This corresponds to having a smaller tensor/scalar ratio at large scales in comparison with the slow-roll counterparts. Similar to slow-roll inflation, it is argued that one can reconstruct the vacuum structure using the CMB experiments.Comment: v1: 8 pages, 2 figures; v2: grammatical typos corrected, results unchanged v3: To be published in JCA

    The generalizability of survey experiments

    Get PDF
    Survey experiments have become a central methodology across the social sciences. Researchers can combine experiments’ causal power with the generalizability of population-based samples. Yet, due to the expense of population-based samples, much research relies on convenience samples (e.g., students, online opt-in samples). The emergence of affordable, but non-representative online samples has reinvigorated debates about the external validity of experiments. We conduct two studies of how experimental treatment effects obtained from convenience samples compare to effects produced by population samples. In Study 1, we compare effect estimates from four different types of convenience samples and a population-based sample. In Study 2, we analyze treatment effects obtained from 20 experiments implemented on a population-based sample and Amazon’s Mechanical Turk. The results reveal considerable similarity between many treatment effects obtained from convenience and nationally representative population-based samples. While the results thus bolster confidence in the utility of convenience samples, we conclude with guidance for the use of a multitude of samples for advancing scientific knowledge

    Inflation without Inflaton(s)

    Get PDF
    We propose a model for early universe cosmology without the need for fundamental scalar fields. Cosmic acceleration and phenomenologically viable reheating of the universe results from a series of energy transitions, where during each transition vacuum energy is converted to thermal radiation. We show that this `cascading universe' can lead to successful generation of adiabatic density fluctuations and an observable gravity wave spectrum in some cases, where in the simplest case it reproduces a spectrum similar to slow-roll models of inflation. We also find the model provides a reasonable reheating temperature after inflation ends. This type of model may also be relevant for addressing the smallness of the vacuum energy today.Comment: 13 pages, 4 figures, published versio

    Model-Independent Comparison of Direct vs. Indirect Detection of Supersymmetric Dark Matter

    Get PDF
    We compare the rate for elastic scattering of neutralinos from various nuclei with the flux of upward muons induced by energetic neutrinos from neutralino annihilation in the Sun and Earth. We consider both scalar and axial-vector interactions of neutralinos with nuclei. We find that the event rate in a kg of germanium is roughly equivalent to that in a 10510^5- to 10710^7-m2^2 muon detector for a neutralino with primarily scalar coupling to nuclei. For an axially coupled neutralino, the event rate in a 50-gram hydrogen detector is roughly the same as that in a 10- to 500-m2^2 muon detector. Expected experimental backgrounds favor forthcoming elastic-scattering detectors for scalar couplings while the neutrino detectors have the advantage for axial-vector couplings.Comment: 10 pages, self-unpacking uuencoded PostScript fil

    Relational lattices via duality

    Full text link
    The natural join and the inner union combine in different ways tables of a relational database. Tropashko [18] observed that these two operations are the meet and join in a class of lattices-called the relational lattices- and proposed lattice theory as an alternative algebraic approach to databases. Aiming at query optimization, Litak et al. [12] initiated the study of the equational theory of these lattices. We carry on with this project, making use of the duality theory developed in [16]. The contributions of this paper are as follows. Let A be a set of column's names and D be a set of cell values; we characterize the dual space of the relational lattice R(D, A) by means of a generalized ultrametric space, whose elements are the functions from A to D, with the P (A)-valued distance being the Hamming one but lifted to subsets of A. We use the dual space to present an equational axiomatization of these lattices that reflects the combinatorial properties of these generalized ultrametric spaces: symmetry and pairwise completeness. Finally, we argue that these equations correspond to combinatorial properties of the dual spaces of lattices, in a technical sense analogous of correspondence theory in modal logic. In particular, this leads to an exact characterization of the finite lattices satisfying these equations.Comment: Coalgebraic Methods in Computer Science 2016, Apr 2016, Eindhoven, Netherland

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure

    Cosmological Challenges in Theories with Extra Dimensions and Remarks on the Horizon Problem

    Get PDF
    We consider the cosmology that results if our observable universe is a 3-brane in a higher dimensional universe. In particular, we focus on the case where our 3-brane is located at the Z2Z_2 symmetry fixed plane of a Z2Z_2 symmetric five-dimensional spacetime, as in the Ho\v{r}ava-Witten model compactified on a Calabi-Yau manifold. As our first result, we find that there can be substantial modifications to the standard Friedmann-Robertson-Walker (FRW) cosmology; as a consequence, a large class of such models is observationally inconsistent. In particular, any relationship between the Hubble constant and the energy density on our brane is possible, including (but not only) FRW. Generically, due to the existence of the bulk and the boundary conditions on the orbifold fixed plane, the relationship is not FRW, and hence cosmological constraints coming from big bang nucleosynthesis, structure formation, and the age of the universe difficult to satisfy. We do wish to point out, however, that some specific choices for the bulk stress-energy tensor components do reproduce normal FRW cosmology on our brane, and we have constructed an explicit example. As our second result, for a broad class of models, we find a somewhat surprising fact: the stabilization of the radius of the extra dimension and hence the four dimensional Planck mass requires unrealistic fine-tuning of the equation of state on our 3-brane. In the last third of the paper, we make remarks about causality and the horizon problem that apply to {\it any} theory in which the volume of the extra dimension determines the four-dimensional gravitational coupling. We point out that some of the assumptions that lead to the usual inflationary requirements are modified.Comment: 15 page REVTeX file; to appear in Phys. Rev. D; clarified the statement of being able to obtain any power dependence of the Hubble expansion rate on the energy density; added reference

    On the Possibility of Large Axion Decay Constants

    Full text link
    The decay constant of the QCD axion is required by observation to be small compared to the Planck scale. In theories of "natural inflation," and certain proposed anthropic solutions of the cosmological constant problem, it would be interesting to obtain a large decay constant for axion-like fields from microscopic physics. String theory is the only context in which one can sensibly address this question. Here we survey a number of periodic fields in string theory in a variety of string vacua. In some examples, the decay constant can be parameterically larger than the Planck scale but the effective action then contains appreciable harmonics of order fA/Mpf_A/M_p. As a result, these fields are no better inflaton candidates than Planck scale axions.Comment: 17 pages, no figures, minor change mad
    corecore