37 research outputs found

    Recent increase of ulcerative lesions caused by Anisakis spp. in cetaceans from the north-east Atlantic

    Get PDF
    Species of Anisakis typically infect the stomach of cetaceans worldwide, often causing ulcerative lesions that may compromise the host’s health. These nematodes also cause anisakiasis or allergic reactions in humans. To assess the risks of this emerging zoonosis, data on long-term changes in Anisakis infections in cetaceans are necessary. Here, we compare the prevalence and severity of ulcerative lesions caused by Anisakis spp. in five cetacean species stranded along the north-west Spanish coast in 2017–2018 with published data from 1991–1996. Open ulcers were found in 32/ 43 short-beaked common dolphins, Delphinus delphis; 3/5 striped dolphins, Stenella coeruleoalba; 1/7 bottlenose dolphins, Tursiops truncatus; and 1/3 harbour porpoises, Phocoena phocoena mer- idionalis; a single individual of long-finned pilot whale, Globicephala melas, was found unin- fected. In common dolphins, the mean abundance of open ulcers per host was 1.1 (95% confidence interval: 0.8–1.3), with a maximum diameter (mean ± standard deviation) of 25.4 ± 16.9 mm. Stomachs with scars or extensive fibrosis putatively associated with Anisakis were detected in 14 and five animals, respectively. A molecular analysis based on the mitochondrial cytochrome c oxidase II gene using 18 worms from three cetacean species revealed single or mixed infections ofAnisakis simplex sensu stricto and Anisakis pegreffii. Compared with the per- iod 1991–1996, we found a strong increase of prevalence, abundance and extension of ulcerative lesions in most cetacean species. Anisakis populations could have increased in the study area over the last decades, although we cannot rule out that a higher environmental stress has also boosted the pathological effects of these parasites.En prens

    Limits on the Diffuse Gamma-Ray Background above 10 TeV with HAWC

    Full text link
    The high-energy Diffuse Gamma-Ray Background (DGRB) is expected to be produced by unresolved isotropically distributed astrophysical objects, potentially including dark matter annihilation or decay emissions in galactic or extragalactic structures. The DGRB has only been observed below 1 TeV; above this energy, upper limits have been reported. Observations or stringent limits on the DGRB above this energy could have significant multi-messenger implications, such as constraining the origin of TeV-PeV astrophysical neutrinos detected by IceCube. The High Altitude Water Cherenkov (HAWC) Observatory, located in central Mexico at 4100 m above sea level, is sensitive to gamma rays from a few hundred GeV to several hundred TeV and continuously observes a wide field-of-view (2 sr). With its high-energy reach and large area coverage, HAWC is well-suited to notably improve searches for the DGRB at TeV energies. In this work, strict cuts have been applied to the HAWC dataset to better isolate gamma-ray air showers from background hadronic showers. The sensitivity to the DGRB was then verified using 535 days of Crab data and Monte Carlo simulations, leading to new limits above 10 TeV on the DGRB as well as prospective implications for multi-messenger studies.Comment: 8 pages, 3 figure

    A Contribution of the HAWC Observatory to the TeV era in the High Energy Gamma-Ray Astrophysics: The case of the TeV-Halos

    Full text link
    We present a short overview of the TeV-Halos objects as a discovery and a relevant contribution of the High Altitude Water \v{C}erenkov (HAWC) observatory to TeV astrophysics. We discuss history, discovery, knowledge, and the next step through a new and more detailed analysis than the original study in 2017. TeV-Halos will contribute to resolving the problem of the local positron excess observed on the Earth. To clarify the latter, understanding the diffusion process is mandatory.Comment: Work presented in the 21st International Symposium on Very High Energy Cosmic Ray Interactions(ISVHECRI 2022) as part of the Ph. D. Thesis of Ramiro Torres-Escobedo (SJTU, Shanghai, China). Accepted for publication in SciPost Physics Proceedings (ISSN 2666-4003). 11 pages, 3 Figures. Short overview of HAWC and TeV Halos objects until 202

    Search for Gamma-Ray and Neutrino Coincidences Using HAWC and ANTARES Data

    Full text link
    In the quest for high-energy neutrino sources, the Astrophysical Multimessenger Observatory Network (AMON) has implemented a new search by combining data from the High Altitude Water Cherenkov (HAWC) observatory and the Astronomy with a Neutrino Telescope and Abyss environmental RESearch (ANTARES) neutrino telescope. Using the same analysis strategy as in a previous detector combination of HAWC and IceCube data, we perform a search for coincidences in HAWC and ANTARES events that are below the threshold for sending public alerts in each individual detector. Data were collected between July 2015 and February 2020 with a livetime of 4.39 years. Over this time period, 3 coincident events with an estimated false-alarm rate of <1< 1 coincidence per year were found. This number is consistent with background expectations.Comment: 12 pages, 5 figures, 3 table

    Multimessenger NuEM Alerts with AMON

    Get PDF
    The Astrophysical Multimessenger Observatory Network (AMON), has developed a real-time multi-messenger alert system. The system performs coincidence analyses of datasets from gamma-ray and neutrino detectors, making the Neutrino-Electromagnetic (NuEM) alert channel. For these analyses, AMON takes advantage of sub-threshold events, i.e., events that by themselves are not significant in the individual detectors. The main purpose of this channel is to search for gamma-ray counterparts of neutrino events. We will describe the different analyses that make-up this channel and present a selection of recent results
    corecore