267 research outputs found

    Zero-gravity movement studies

    Get PDF
    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms

    Ontology engineering for simulation component reuse

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are widely used in industry, although they have yet to operate across organizational boundaries. Reuse across organizations is restricted by the same semantic issues that restrict the inter-organizational use of web services. The current representations of web components are predominantly syntactic in nature lacking the fundamental semantic underpinning required to support discovery on the emerging semantic web. Semantic models, in the form of ontology, utilized by web service discovery and deployment architectures provide one approach to support simulation model reuse. Semantic interoperation is achieved through the use of simulation component ontologies to identify required components at varying levels of granularity (including both abstract and specialized components). Selected simulation components are loaded into a CSP, modified according to the requirements of the new model and executed. The paper presents the development of an ontology, connector software and web service discovery architecture. The ontology is extracted from simulation scenarios involving airport, restaurant and kitchen service suppliers. The ontology engineering framework and discovery architecture provide a novel approach to inter-organizational simulation, adopting a less intrusive interface between participants. Although specific to CSPs the work has wider implications for the simulation community

    Structure and evolution of the intracratonic Congo Basin

    Get PDF
    Surface wave tomography, heat flow, and crustal thickness measurements have demonstrated that the thickness of the continental lithosphere varies by at least a factor of 2. Since the thermal time constant of the lithosphere depends upon the square of its thickness, subsidence records of extensional sedimentary basins offer a potential way of extending these observations into the past. Here we examine the Congo basin, a large and iconic intracratonic sedimentary basin in Central Africa. This roughly circular basin covers an area in excess of 1.4 × 106 km2 with more than 5 km thickness of sedimentary rocks, the oldest parts of which are late Precambrian in age. First, we assess the thickness of the lithosphere. We have estimated its thickness across Africa using maps of shear wave velocity obtained by inversion of fundamental and higher-mode surface waveforms. The Congo Basin sits on 220 ± 30 km thick lithosphere and appears to be part of a southern core to the continent encompassing both Archean cratons and Proterozoic mobile belts. This thickness is consistent with published estimates from kimberlites. Reappraisal of legacy seismic reflection images demonstrates that the sedimentary section is underlain by a Late Precambrian rift zone and that the basin is still subsiding today. Subsidence modeling of two deep wells is consistent with uniform extension and cooling of the lithosphere by a factor of 1.2 during latest Precambrian and Cambrian time; we argue that the exceptional 0.55 Ga history of the basin is a direct consequence of the lithospheric thermal time constant being a factor of 4 longer than normal. Today, the basin coincides with a long-wavelength −30 to −40 mGal gravity anomaly. We interpret this gravity anomaly as the surficial manifestation of 400–600 m of recent mantle convective drawdown in response to the onset of upwelling plumes around the flanks of the southern African continent. The alternative explanation, that it is the static manifestation of locally thick lithosphere, is inconsistent with global trends of mantle density depletion. Our interpretation is consistent with fast seismic velocities observed throughout the sublithospheric upper mantle underneath the basin and recent geodynamic modeling

    Prospective Investigation of Pesticide Applicators' Health (PIPAH) study: a cohort study of professional pesticide users in Great Britain

    Get PDF
    PURPOSE: The purpose of the study is to monitor the exposure and health of workers in Great Britain who use pesticides as a part of their job, and to gain a better understanding of the relationship between long-term exposure to pesticides and health. PARTICIPANTS: Study participants are professional pesticide users who are certified in the safe use of pesticides or who were born before 1965 and apply pesticides under 'grandfather rights'. Overall response rate was 20%; participants are mostly male (98%) and the average age is 54 years, ranging from 17 to over 80 years. FINDINGS TO DATE: Participants have completed a baseline general questionnaire and three follow-up questionnaires on the use of pesticides. These data will enable investigations into the relationship between occupational pesticide exposure and health outcomes taking into account non-occupational confounding factors. FUTURE PLANS: There is no set end date for data collection. Recruitment into the cohort will continue, and for the foreseeable future there will be annual pesticide use questionnaires and five yearly follow-up general questionnaires.The intention is to validate the pesticide use questionnaire, and to develop a crop/job exposure matrix (C/JEM) which can be updated regularly. This C/JEM will be able to look at general categories of pesticide, such as insecticides, structurally related pesticides, such as organochlorines, or individual active ingredients. Data collected on use of personal protective equipment and method of application will provide information on how potential exposure to pesticide during application may have been modified. The study will be able to estimate changes in individual pesticide use over time, and to examine the associations between pesticide use and both baseline and long-term health outcomes.The cohort members will be linked to national databases for notification of hospital episode statistics, cancer incidence and mortality for follow-up of health outcomes

    Techniques for the endovascular management of complications following lower limb percutaneous transluminal angioplasty

    Get PDF
    AbstractObjectives: to determine the incidence of early complications following percutaneous transluminal angioplasty and to describe their management and outcome. Materials: five hundred and fifty consecutive patients undergoing angioplasty of 648 limbs, containing 1053 anatomical segments during a two year period were reviewed retrospectively. Results: early complications affected 109 segments (10%) in 92 limbs (14%) of 84 patients (15%). Of the 109 segments affected by early complications, 106 (97%) were managed by endovascular techniques with surgery being required on only three (3%) occasions. There were no deaths attributable to angioplasty. Conclusions: although early complications occur in 14% of limbs undergoing percutaneous transfemoral angioplasty, the majority (97%) can be managed by endovascular techniques.Eur J Vasc Endovasc Surg 25, 125–130 (2003

    Structure-Based Identification and Characterization of Inhibitors of the Epilepsy-Associated KNa1.1 (KCNT1) Potassium Channel

    Get PDF
    Drug-resistant epileptic encephalopathies of infancy have been associated with KCNT1 gainof-function mutations, which increase the activity of KNa1.1 sodium-activated potassium channels. Pharmacological inhibition of hyperactive KNa1.1 channels by quinidine has been proposed as a stratified treatment, but mostly this has not been successful, being linked to the low potency and lack of specificity of the drug. Here we describe the use of a previously determined cryo-electron microscopy-derived KNa1.1 structure and mutational analysis to identify how quinidine binds to the channel pore and, using computational methods, screened for compounds predicated to bind to this site. We describe six compounds that inhibited KNa1.1 channels with low- and sub-micromolar potencies, likely also through binding in the intracellular pore vestibule. In hERG inhibition and cytotoxicity assays, two compounds were ineffective. These may provide starting points for the development of new pharmacophores and could become tool compounds to study this channel further
    corecore