299 research outputs found
Subcellular Targeting of Theranostic Radionuclides
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm–mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm–μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm–μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described
MRI-guided radiotherapy of the SK-N-SH neuroblastoma xenograft model using a small animal radiation research platform
Objective: Neuroblastoma has one of the lowest survival rates of all childhood cancers, despite the use of intensive treatment regimens. Preclinical models of neuroblastoma are essential for testing new multimodality protocols, including those that involve radiotherapy (RT). The aim of this study was to develop a robust method for RT planning and tumour response monitoring based on combined MRI and cone-beam CT (CBCT) imaging and to apply it to a widely studied mouse xenograft model of neuroblastoma, SK-N-SH. Methods: As part of a tumour growth inhibition study, SK-N-SH xenografts were generated in BALB/c nu/nu mice. Mice (n58) were placed in a printed MR-And CT-compatible plastic cradle, imaged using a 4.7-T MRI scanner and then transferred to a small animal radiation research platform (SARRP) irradiator with on-board CBCT. MRI/CBCT co-registration was performed to enable RT planning using the soft-Tissue contrast afforded by MRI prior to delivery of RT (5Gy). Tumour response was assessed by serial MRI and calliper measurements. Results: SK-N-SH xenografts formed soft, deformable tumours that could not be differentiated from surrounding normal tissues using CBCT. MR images, which allowed clear delineation of tumours, were successfully coregistered with CBCT images, allowing conformal RT to be delivered. MRI measurements of tumour volume 4 days after RT correlated strongly with length of survival time. Conclusion: MRI allowed precision RT of SK-N-SH tumours and provided an accurate means of measuring tumour response. Advances in knowledge: MRI-based RT planning of murine tumours is feasible using an SARRP irradiator
Imaging DNA Damage Repair In Vivo After 177Lu-DOTATATE Therapy
Molecular radiotherapy using 177Lu-DOTATATE is a most effective treatment for somatostatin receptor-expressing neuroendocrine tumors. Despite its frequent and successful use in the clinic, little or no radiobiologic considerations are made at the time of treatment planning or delivery. On positive uptake on octreotide-based PET/SPECT imaging, treatment is usually administered as a standard dose and number of cycles without adjustment for peptide uptake, dosimetry, or radiobiologic and DNA damage effects in the tumor. Here, we visualized and quantified the extent of DNA damage response after 177Lu-DOTATATE therapy using SPECT imaging with 111In-anti-γH2AX-TAT. This work was a proof-of-principle study of this in vivo noninvasive biodosimeter with β-emitting therapeutic radiopharmaceuticals. Methods: Six cell lines were exposed to external-beam radiotherapy (EBRT) or 177Lu-DOTATATE, after which the number of γH2AX foci and the clonogenic survival were measured. Mice bearing CA20948 somatostatin receptor-positive tumor xenografts were treated with 17
Kinesin Light Chain 1 Suppression Impairs Human Embryonic Stem Cell Neural Differentiation and Amyloid Precursor Protein Metabolism
The etiology of sporadic Alzheimer disease (AD) is largely unknown, although evidence implicates the pathological hallmark molecules amyloid beta (Aβ) and phosphorylated Tau. Work in animal models suggests that altered axonal transport caused by Kinesin-1 dysfunction perturbs levels of both Aβ and phosphorylated Tau in neural tissues, but the relevance of Kinesin-1 dependent functions to the human disease is unknown. To begin to address this issue, we generated human embryonic stem cells (hESC) expressing reduced levels of the kinesin light chain 1 (KLC1) Kinesin-1 subunit to use as a source of human neural cultures. Despite reduction of KLC1, undifferentiated hESC exhibited apparently normal colony morphology and pluripotency marker expression. Differentiated neural cultures derived from KLC1-suppressed hESC contained neural rosettes but further differentiation revealed obvious morphological changes along with reduced levels of microtubule-associated neural proteins, including Tau and less secreted Aβ, supporting the previously established connection between KLC1, Tau and Aβ. Intriguingly, KLC1-suppressed neural precursors (NPs), isolated using a cell surface marker signature known to identify cells that give rise to neurons and glia, unlike control cells, failed to proliferate. We suggest that KLC1 is required for normal human neural differentiation, ensuring proper metabolism of AD-associated molecules APP and Tau and for proliferation of NPs. Because impaired APP metabolism is linked to AD, this human cell culture model system will not only be a useful tool for understanding the role of KLC1 in regulating the production, transport and turnover of APP and Tau in neurons, but also in defining the essential function(s) of KLC1 in NPs and their progeny. This knowledge should have important implications for human neurodevelopmental and neurodegenerative diseases
Trends in life science grid: from computing grid to knowledge grid
BACKGROUND: Grid computing has great potential to become a standard cyberinfrastructure for life sciences which often require high-performance computing and large data handling which exceeds the computing capacity of a single institution. RESULTS: This survey reviews the latest grid technologies from the viewpoints of computing grid, data grid and knowledge grid. Computing grid technologies have been matured enough to solve high-throughput real-world life scientific problems. Data grid technologies are strong candidates for realizing "resourceome" for bioinformatics. Knowledge grids should be designed not only from sharing explicit knowledge on computers but also from community formulation for sharing tacit knowledge among a community. CONCLUSION: Extending the concept of grid from computing grid to knowledge grid, it is possible to make use of a grid as not only sharable computing resources, but also as time and place in which people work together, create knowledge, and share knowledge and experiences in a community
Functioning and quality of life in patients with neuropathy associated with anti-MAG antibodies
Although anti-myelin-associated glycoprotein (MAG) antibody neuropathy is reported as a slowly progressive disease, it can lead to significant disability and impairment of health related quality of life (HR-QoL) and social participation. The aim of this crosssectional study was to evaluate the functioning and HR-QoL determinants in 67 patients with anti-MAG neuropathy in terms of the International Classification of Functioning, Disability, and Health (ICF). Evaluations included: Medical Research Council (MRC) sum score, Sensory Modality Sum score (SMS), Berg balance scale (BBS), Fatigue Severity Scale (FSS), Visual Analogue Scale (VAS) for pain, 9-Hole Peg Test (9-HPT), 6-Minute Walk Distance (6MWD), Impact on Participation and Autonomy (IPA) and the physical component score (PCS) and mental component score (MCS) of the short-form-36 health status scale (SF-36) HR-QoL measure. In the regression models, 6MWD was the most reliable predictor of PCS, explaining the 52% of its variance, while the strongest determinants of 6MWD were BBS and FSS, explaining the 41% of its variance. Consistently, VAS and BBS were good predictor of PCS, explaining together 54% of its variance. FSS was the most reliable determinant of MCS, explaining 25% of its variance. SMS and MRC were not QoL determinants. The results of our study suggest that 6MWD and FSS might be considered as potential meaningful outcome measures in future clinical trials. Furthermore, neurorehabilitation interventions aimed at improving balance and walking performance, fatigue management, and specific pain relief therapy should be considered in order to ameliorate participation in social life and HR-QoL in anti-MAG neuropathy patients
Investigation of the Stationary and Transient A1·− Radical in Trp → Phe Mutants of Photosystem I
Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A1 site is π-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these tryptophan residues are changed to phenylalanine. The time-resolved optical data show that backward electron transfer from the terminal electron acceptors to P700·+ is affected in the A- and B-branch mutants, both at ambient and cryogenic temperatures. These results suggest that the quinones in both branches take part in electron transport at all temperatures. The electron-nuclear double resonance (ENDOR) spectra of the spin-correlated radical pair P700·+A1·− and the photoaccumulated radical anion A1·−, recorded at cryogenic temperature, allowed the identification of characteristic resonances belonging to protons of the methyl group, some of the ring protons and the proton hydrogen-bonded to phylloquinone in the wild type and both mutants. Significant changes in PS I isolated from the A-branch mutant are detected, while PS I isolated from the B-branch mutant shows the spectral characteristics of wild-type PS I. A possible short-lived B-branch radical pair cannot be detected by EPR due to the available time resolution; therefore, only the A-branch quinone is observed under conditions typically employed for EPR and ENDOR spectroscopies
- …