14,766 research outputs found

    Black hole formation in core-collapse supernovae and time-of-flight measurements of the neutrino masses

    Get PDF
    In large stars that have exhausted their nuclear fuel, the stellar core collapses to a hot and dense proto-neutron star that cools by the radiation of neutrinos and antineutrinos of all flavors. Depending on its final mass, this may become either a neutron star or a black hole. Black hole formation may be triggered by mass accretion or a change in the high-density equation of state. We consider the possibility that black hole formation happens when the flux of neutrinos is still measurably high. If this occurs, then the neutrino signal from the supernova will be terminated abruptly (the transition takes ≲0.5 ms). The properties and duration of the signal before the cutoff are important measures of both the physics and astrophysics of the cooling proto-neutron star. For the event rates expected in present and proposed detectors, the cutoff will generally appear sharp, thus allowing model-independent time-of-flight mass tests for the neutrinos after the cutoff. If black hole formation occurs relatively early, within a few (∼1) seconds after core collapse, then the expected luminosities are of order LBH=1052 erg/s per flavor. In this case, the neutrino mass sensitivity can be extraordinary. For a supernova at a distance D=10 kpc, SuperKamiokande can detect a ν̅e mass down to 1.8 eV by comparing the arrival times of the high-energy and low-energy neutrinos in ν̅e+p→e++n. This test will also measure the cutoff time, and will thus allow a mass test of νμ and ντ relative to ν̅e. Assuming that νμ and ντ are nearly degenerate, as suggested by the atmospheric neutrino results, masses down to about 6 eV can be probed with a proposed lead detector of mass MD=4 kton (OMNIS). Remarkably, the neutrino mass sensitivity scales as (D/LBHMD)1/2. Therefore, direct sensitivity to all three neutrino masses in the interesting few-eV range is realistically possible; there are no other known techniques that have this capability

    Model-Independent Semileptonic Form Factors Using Dispersion Relations

    Full text link
    We present a method for parametrizing heavy meson semileptonic form factors using dispersion relations, and from it produce a two-parameter description of the B -> B elastic form factor. We use heavy quark symmetry to relate this function to B -> D* l nu form factors, and extract |V_cb|=0.0355^{+0.0029}_{-0.0025} from experimental data with a least squares fit. Our method eliminates model-dependent uncertainties inherent in choosing a parametrization for the extrapolation of the differential decay rate to threshold.Comment: uses lanlmac(harvmac) and epsf, 12 pages, 1 eps figure included (Talk by BG at the 6-th International Symposium on Heavy Flavour Physics, Pisa, Italy, 6--10 June, 1995

    Neutrino-Nucleus Cross Section Measurements using Stopped Pions and Low Energy Beta Beams

    Full text link
    Two new facilities have recently been proposed to measure low energy neutrino-nucleus cross sections, the nu-SNS (Spallation Neutron Source) and low energy beta beams. The former produces neutrinos by pion decay at rest, while the latter produces neutrinos from the beta decays of accelerated ions. One of the uses of neutrino-nucleus cross section measurements is for supernova studies, where typical neutrino energies are 10s of MeV. In this energy range there are many different components to the nuclear response and this makes the theoretical interpretation of the results of such an experiment complex. Although even one measurement on a heavy nucleus such as lead is much anticipated, more than one data set would be still better. We suggest that this can be done by breaking the electron spectrum down into the parts produced in coincidence with one or two neutrons, running a beta beam at more than one energy, comparing the spectra produced with pions and a beta beam or any combination of these.Comment: 6 pages, 6 figure

    Conditional preparation of states containing a definite number of photons

    Full text link
    A technique for conditionally creating single- or multimode photon-number states is analyzed using Bayesian theory. We consider the heralded N-photon states created from the photons produced by an unseeded optical parametric amplifier when the heralding detector is the time-multiplexed photon-number-resolving detector recently demonstrated by Fitch, et al. [Phys. Rev. A 68, 043814 (2003).] and simultaneously by Achilles, et al. [Opt. Lett. 28, 2387 (2003).]. We find that even with significant loss in the heralding detector, fields with sub-Poissonian photon-number distributions can be created. We also show that heralded multimode fields created using this technique are more robust against detector loss than are single-mode fields.Comment: 6 pages, 6 figures, reference added, typos corrected, content update

    New Constraints on Dispersive Form Factor Parameterizations from the Timelike Region

    Get PDF
    We generalize a recent model-independent form factor parameterization derived from rigorous dispersion relations to include constraints from data in the timelike region. These constraints dictate the convergence properties of the parameterization and appear as sum rules on the parameters. We further develop a new parameterization that takes into account finiteness and asymptotic conditions on the form factor, and use it to fit to the elastic \pi electromagnetic form factor. We find that the existing world sample of timelike data gives only loose bounds on the form factor in the spacelike region, but explain how the acquisition of additional timelike data or fits to other form factors are expected to give much better results. The same parameterization is seen to fit spacelike data extremely well.Comment: 24 pages, latex (revtex), 3 eps figure

    Dynamic Energy Management

    Full text link
    We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.Comment: 63 pages, 15 figures, accompanying open source librar

    Quantum Turbulence in a Trapped Bose-Einstein Condensate

    Full text link
    We study quantum turbulence in trapped Bose-Einstein condensates by numerically solving the Gross-Pitaevskii equation. Combining rotations around two axes, we successfully induce quantum turbulent state in which quantized vortices are not crystallized but tangled. The obtained spectrum of the incompressible kinetic energy is consistent with the Kolmogorov law, the most important statistical law in turbulence.Comment: 4 pages, 4 figures, Physical Review A 76, 045603 (2007

    Bounds on Heavy-to-Heavy Mesonic Form Factors

    Get PDF
    We provide upper and lower bounds on the form factors for B -> D, D^* by utilizing inclusive heavy quark effective theory sum rules. These bounds are calculated to leading order in Lambda_QCD/m_Q and alpha_s. The O(alpha_s^2 beta_0) corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form factor models used in the literature. All the models we investigated failed to fall within the bounds for the combination of form factors (omega^2 - 1)/(4 omega)|omega h_{A2}+h_{A3}|^2.Comment: 27 pages, 10 figure
    • …
    corecore