1,638 research outputs found

    Scalable Methods for Adaptively Seeding a Social Network

    Full text link
    In recent years, social networking platforms have developed into extraordinary channels for spreading and consuming information. Along with the rise of such infrastructure, there is continuous progress on techniques for spreading information effectively through influential users. In many applications, one is restricted to select influencers from a set of users who engaged with the topic being promoted, and due to the structure of social networks, these users often rank low in terms of their influence potential. An alternative approach one can consider is an adaptive method which selects users in a manner which targets their influential neighbors. The advantage of such an approach is that it leverages the friendship paradox in social networks: while users are often not influential, they often know someone who is. Despite the various complexities in such optimization problems, we show that scalable adaptive seeding is achievable. In particular, we develop algorithms for linear influence models with provable approximation guarantees that can be gracefully parallelized. To show the effectiveness of our methods we collected data from various verticals social network users follow. For each vertical, we collected data on the users who responded to a certain post as well as their neighbors, and applied our methods on this data. Our experiments show that adaptive seeding is scalable, and importantly, that it obtains dramatic improvements over standard approaches of information dissemination.Comment: Full version of the paper appearing in WWW 201

    Première, deuxième et troisième personne chez Lacan

    Get PDF

    Online Admission Control and Embedding of Service Chains

    Full text link
    The virtualization and softwarization of modern computer networks enables the definition and fast deployment of novel network services called service chains: sequences of virtualized network functions (e.g., firewalls, caches, traffic optimizers) through which traffic is routed between source and destination. This paper attends to the problem of admitting and embedding a maximum number of service chains, i.e., a maximum number of source-destination pairs which are routed via a sequence of to-be-allocated, capacitated network functions. We consider an Online variant of this maximum Service Chain Embedding Problem, short OSCEP, where requests arrive over time, in a worst-case manner. Our main contribution is a deterministic O(log L)-competitive online algorithm, under the assumption that capacities are at least logarithmic in L. We show that this is asymptotically optimal within the class of deterministic and randomized online algorithms. We also explore lower bounds for offline approximation algorithms, and prove that the offline problem is APX-hard for unit capacities and small L > 2, and even Poly-APX-hard in general, when there is no bound on L. These approximation lower bounds may be of independent interest, as they also extend to other problems such as Virtual Circuit Routing. Finally, we present an exact algorithm based on 0-1 programming, implying that the general offline SCEP is in NP and by the above hardness results it is NP-complete for constant L.Comment: early version of SIROCCO 2015 pape

    Experimental observation of exceptional points in coupled pendulums

    Full text link
    The concept of exceptional point (EP) is demonstrated experimentally in the case of a simple mechanical system consisting of two coupled pendulums. Exceptional points correspond to specific values of the system parameters that yield defective eigenvalues. These spectral singularities which are typical of non-Hermitian system means that both the eigenvalues and their associated eigenvectors coalesce. The existence of an EP requires an adequate parameterization of the dynamical system. For this aim, the experimental device has been designed with two controllable parameters which are the length of one pendulum and a viscous-like damping which is produced via electromagnetic induction. Thanks to the observation of the free response of the coupled pendulums, most EP properties are experimentally investigated, showing good agreements with theoretical considerations. In contrast with many studies on EPs, mainly in the field of physics, the novelty of the present work is that controllable parameters are restricted to be real-valued, and this requires the use of adequate search algorithms. Furthermore, it offers the possibility of exploiting the existence of EPs in time-domain dynamic problems

    Concurrent bandits and cognitive radio networks

    Full text link
    We consider the problem of multiple users targeting the arms of a single multi-armed stochastic bandit. The motivation for this problem comes from cognitive radio networks, where selfish users need to coexist without any side communication between them, implicit cooperation or common control. Even the number of users may be unknown and can vary as users join or leave the network. We propose an algorithm that combines an ϵ\epsilon-greedy learning rule with a collision avoidance mechanism. We analyze its regret with respect to the system-wide optimum and show that sub-linear regret can be obtained in this setting. Experiments show dramatic improvement compared to other algorithms for this setting

    Game-theoretic analysis of pay-as-bid mechanisms

    Get PDF
    Enterprises are facing a challenging dilemma. In order to be able to accommodate peak loads on their IT systems, they must maintain large computing clusters, which lie idle most of the time. At the same time, IT departments are under constant pressure to cut down on hard- and software expenses. Grid technology offers a promising way out of this dilemma by allowing the dynamic sharing both within enterprises as well as across organizational boundaries. This sharing approach, however, requires proper economic incentives. This paper is concerned with the determination of dynamic market-based prices. Due to their simplicity, so-called pay-as-bid mechanisms have become popular. This paper is novel as we provide an in-depth analysis of two such pay-as-bid mechanisms – Proportional Share and a discriminatory pay-as-bid mechanism – for the case of three users, thus extending previous work by Sanghavi and Hajek (2004) and Stößer et al. (2008). This analysis is important as we show that the nice results for two users cannot be retained once three or more users are present. Even worse, we show that these results can even be reversed if we move to games with more than two players

    Pseudorandomness for Regular Branching Programs via Fourier Analysis

    Full text link
    We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2n)O(\log^2 n), where nn is the length of the branching program. The previous best seed length known for this model was n1/2+o(1)n^{1/2+o(1)}, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s1/2+o(1)s^{1/2+o(1)} for arbitrary branching programs of size ss). Our techniques also give seed length n1/2+o(1)n^{1/2+o(1)} for general oblivious, read-once branching programs of width 2no(1)2^{n^{o(1)}}, which is incomparable to the results of Impagliazzo et al.Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In particular, we show that an oblivious, read-once, regular branching program of width ww has Fourier mass at most (2w2)k(2w^2)^k at level kk, independent of the length of the program.Comment: RANDOM 201

    Exploring Molecular Simulations of a Plausible Prebiotic Reduced Phospholipid Using Hyperchem Software

    Get PDF
    How the first cells emerged from the primordial milieu is one of the great questions in science. Biomolecular emergence scenarios abound in the literature, but the lack of bioaccessible phosphate and molecular oxygen on the primordial Earth has posed formidable challenges for deducing emergence pathways. One idea gaining wide acceptance invokes delivery of the phosphide mineral schreibersite ((Fe,Ni)3P) to Earth via meteorite impacts ca. 4.2 billion years ago, whereupon they were corroded to reduced phosphorous oxyacids and phosphonates in primordial aquatic environments. We previously proposed that these reduced phosphorus forms could readily combine with putative geochemical species in shallow mineral-rich alkaline hydrothermal systems to form reduced phospholipid analogs of contemporary phosphate-based phospholipids (Fitch, N.W., K.L. Even, L.J. Leinen and M.O. Gaylor. 2016. Plausible prebiotic assembly of a primitive reduced phospholipid from meteoritic phosphorus on the primordial earth. Proceedings of the South Dakota Academy of. Science 95:176.). Lacking resources to empirically validate this idea, we explored “water box” simulations of the proposed phospholipid structure using the HyperChem software package. Simulation results showed the hydrophobic tails migrating away from water molecules, while hydrophilic heads migrated towards them, resulting in quasistacking behaviors consistent with those of known amphiphiles in water. Inspired by these results, we are now investigating more complex primordial simulation scenarios
    corecore