89 research outputs found

    Obesity-Related Oxidative Stress: the Impact of Physical Activity and Diet Manipulation

    Get PDF
    Obesity-related oxidative stress, the imbalance between pro-oxidants and antioxidants (e.g., nitric oxide), has been linked to metabolic and cardiovascular disease, including endothelial dysfunction and atherosclerosis. Reactive oxygen species (ROS) are essential for physiological functions including gene expression, cellular growth, infection defense, and modulating endothelial function. However, elevated ROS and/or diminished antioxidant capacity leading to oxidative stress can lead to dysfunction. Physical activity also results in an acute state of oxidative stress. However, it is likely that chronic physical activity provides a stimulus for favorable oxidative adaptations and enhanced physiological performance and physical health, although distinct responses between aerobic and anaerobic activities warrant further investigation. Studies support the benefits of dietary modification as well as exercise interventions in alleviating oxidative stress susceptibility. Since obese individuals tend to demonstrate elevated markers of oxidative stress, the implications for this population are significant. Therefore, in this review our aim is to discuss (i) the role of oxidative stress and inflammation as associated with obesity-related diseases, (ii) the potential concerns and benefits of exercise-mediated oxidative stress, and (iii) the advantageous role of dietary modification, including acute or chronic caloric restriction and vitamin D supplementation

    International Consensus Statement on Rhinology and Allergy: Rhinosinusitis

    Get PDF
    Background: The 5 years since the publication of the first International Consensus Statement on Allergy and Rhinology: Rhinosinusitis (ICAR‐RS) has witnessed foundational progress in our understanding and treatment of rhinologic disease. These advances are reflected within the more than 40 new topics covered within the ICAR‐RS‐2021 as well as updates to the original 140 topics. This executive summary consolidates the evidence‐based findings of the document. Methods: ICAR‐RS presents over 180 topics in the forms of evidence‐based reviews with recommendations (EBRRs), evidence‐based reviews, and literature reviews. The highest grade structured recommendations of the EBRR sections are summarized in this executive summary. Results: ICAR‐RS‐2021 covers 22 topics regarding the medical management of RS, which are grade A/B and are presented in the executive summary. Additionally, 4 topics regarding the surgical management of RS are grade A/B and are presented in the executive summary. Finally, a comprehensive evidence‐based management algorithm is provided. Conclusion: This ICAR‐RS‐2021 executive summary provides a compilation of the evidence‐based recommendations for medical and surgical treatment of the most common forms of RS

    Disposable Biosensor for Measuring Sugars in Potatoes and Assessing Acrylamide Formation

    No full text
    13th International Meeting on Chemical Sensors (IMCS-13), Univ Western Australia, Perth, AUSTRALIA, JUL 11-14, 2010We developed a disposable biosensor that combines the concept of first generation glucose biosensors (based on the glucose oxidase enzyme) with mediated detection of hydrogen peroxide (based on the horseradish peroxidase enzyme and ferrocene mediator). A specific ferrocene derivative, 1,1'-ferrocene diacetic acid (Fe(C(5)H(4)CH(2)COOH)(2)), was selected to avoid interference between the two enzymatic systems. The biosensor was able to measure low concentrations of glucose (0.01-1 mM), making it useful to determine the glucose content of potatoes and evaluate the risk of acrylamide formation. The biosensor showed excellent analytical properties in terms of stability, sensitivity, reproducibility, and accuracy. The biosensor was used to quantify glucose in different varieties of potatoes, and the results were validated by comparisons with those obtained by techniques commonly used in the potato processing industry

    The synergetIc effect of redox mediators and peroxidase in a bienzymatic biosensor for glucose assays in FIA

    No full text
    A bienzymatic biosensor incorporating a mediator has been developed in order to achieve a fast and selective detection of glucose in a flow injection system. The working electrode is based on a carbon paste matrix bulk modified with glucose oxidase (GOD) and horseradish peroxidase (HRP) as well as with ferrocene acting as an electron transfer mediator between the electrode and HRP. The proximity of these three components enhances the electron transfer within the electrode. Simple polishing on a paper sheet easily renews the electrode surface. Moreover, the applied working potential (–0.050 V vs.vs. Ag/AgCl) is low, hereby decreasing the interference from electroactive compounds and thus increasing the selectivity of the biosensor. The characteristics of the developed bienzymatic electrode are presented in terms of sensitivity, linear detection range, accuracy and operational stability
    • 

    corecore