4 research outputs found

    N2O flux measurements over an irrigated maize crop: A comparison of three methods

    No full text
    International audienceThis paper presents the NitroCOSMES campaign, aimed at testing and evaluating the performance of three methods for monitoring N2O fluxes over an agricultural field. The experiment was conducted from May to August 2012 at a site located in the south-west of France. N2O fluxes from a 24 ha irrigated maize field were measured using eddy covariance (EC), automated chamber (AC) and static chamber (SC) methodologies. Uncertainties were calculated according to the specificities of each set-up. Measurements were performed over a large range of water-filled pore spaces (WFPS), soil temperatures, and mineral nitrogen availability, and offered the opportunity to compare methodologies over a wide range of N2O emission intensities. The average N2O fluxes were compared among the three methodologies during the same periods of measurement and for different intensities of emissions (low, moderate and high). Periods of comparison were determined according to the AC results. On average, the three methods gave comparable results for the low (SC: 14.7 ± 2.2, EC: 15.7 ± 10.1, AC: 17.5 ± 1.6 ng N2O-N m−ÂČ s−1) and the high (SC: 131.7 ± 22.1, EC: 125.3 ± 8, AC: 125.1 ± 8.9 ng N2O-N m−ÂČ s−1) N2O emission ranges. For the moderate N2O emission range, AC measurements gave higher emissions (57.2 ± 3.9 ng N2O-N m−ÂČ s−1) on average than both the SC (41.6 ± 6.6 ng N2O-N m−ÂČ s−1) and EC (33.8 ± 3.9 ng N2O-N m−ÂČ s−1) methods, which agreed better with each other. The relative standard deviation coefficient (RSD) indicated that EC methodology gave highly variable values during periods of low N2O emissions, from -52.2 ± 88.1 to 62.2 ± 50.7 ng N2O-N m−ÂČ s−1, with a mean RSD of 151%. Water vapour effects (dilution and spectroscopic cross-sensitivity) were discussed in an attempt to explain the high variability in low N2O emission measurements. Even after applying the Webb term correction, there could still be a spectroscopic cross-sensitivity effect of water vapour on the N2O trace gas signal because of the layout of the analysers, which was not determined during the experiment. This study underlined that EC methodology is a promising way to estimate and refine N2O budgets at the field scale and to analyse the effects of different agricultural practices more finely with continuous flux monitoring. It also highlighted the need to continue the effort to assess and develop chambers and EC methodologies, especially for the low N2O emission measurement range, for which values and systematic uncertainties remain high and highly variable

    Toward Rapid balloon Experiments for sudden Aerosol injection in the Stratosphere (REAS) by volcanic eruptions and wildfires

    No full text
    International audienceStratospheric aerosols are greatly influenced by medium-to-large volcanic eruptions. Over the last few years, extreme wildfires have been identified as new sources of stratospheric particles, in the form of carbonaceous aerosols injected by pyroCb events in the upper troposphere and lower stratosphere, associated with significant impacts on climate and ozone chemistry. To assess the impact of wildfires and volcanic eruptions on stratospheric aerosol loadings in the Northern Hemisphere, the Rapid Experiments for sudden Aerosol injection in the Stratosphere project has been initiated. REAS is an international initiative that aims to respond to sudden events impacting stratospheric aerosol composition. Seventeen balloons were launched from Reims, Eastern France, between November 2021 and January 2022 to quantify the atmospheric content for both aerosols and trace/greenhouse gases from the ground up to stratospheric levels. The main measurements concerned trace gases (CO/CO 2 as tracers of smoke) and aerosol together with ozone using instruments such as a gas collector, optical particle counters, backscatter sondes, an aerosol sampler, an aerosol impactor, and ozonesondes. GSMA launch facility provided unique possibilities of combining multiple measurements in one flight thanks to medium flights (corresponding to a 6kg payload). While no major event impacted the stratosphere during the campaign, we particularly discuss the influence of the aged volcanic plume from La SoufriĂšre volcano (Saint Vincent island) and smoke particles from series of pyroCb events that took place in North America. The burden as well as the optical and microphysical properties of the observed aerosols are quantified from these in situ observations in association with various satellite data

    Electrophoretic Deposition of Ceramic Coatings on Metal Surfaces

    No full text
    corecore