18 research outputs found

    Fear balance is maintained by bodily feedback to the insular cortex in mice

    Get PDF
    How does the brain maintain fear within an adaptive range? We found that the insular cortex acts as a state-dependent regulator of fear that is necessary to establish an equilibrium between the extinction and maintenance of fear memories in mice. Whereas insular cortex responsiveness to fear-evoking cues increased with their certainty to predict harm, this activity was attenuated through negative bodily feedback that arose from heart rate decelerations during freezing. Perturbation of body-brain communication by vagus nerve stimulation disrupted the balance between fear extinction and maintenance similar to insular cortex inhibition. Our data reveal that the insular cortex integrates predictive sensory and interoceptive signals to provide graded and bidirectional teaching signals that gate fear extinction and illustrate how bodily feedback signals are used to maintain fear within a functional equilibrium

    Case report: Congenital extrahepatic portocaval shunt presenting as pulmonary arterial hypertension in a pregnant patient

    Get PDF
    Congenital extrahepatic portocaval shunt (CEPS) is a rare condition in which a rare congenital vascular anomaly of the portal system is present. CEPS may manifest as pulmonary arterial hypertension (PAH). When diagnosed and treated early, PAH can be reversible. We report a case of a previously asymptomatic woman, who manifested with severe pulmonary hypertension during pregnancy and was consequently diagnosed with CEPS. After unsuccessful medical treatment, urgent lung transplantation was done

    Machine-learning approaches to classify and understand emotion states in mice

    No full text

    Report

    Get PDF
    Understanding the neurobiological underpinnings of emotion relies on objective readouts of the emotional state of an individual, which remains a major challenge especially in animal models. We found that mice exhibit stereotyped facial expressions in response to emotionally salient events, as well as upon targeted manipulations in emotion-relevant neuronal circuits. Facial expressions were classified into distinct categories using machine learning and reflected the changing intrinsic value of the same sensory stimulus encountered under different homeostatic or affective conditions. Facial expressions revealed emotion features such as intensity, valence, and persistence. Two-photon imaging uncovered insular cortical neuron activity that correlated with specific facial expressions and may encode distinct emotions. Facial expressions thus provide a means to infer emotion states and their neuronal correlates in mice

    Aversive state processing in the posterior insular cortex

    No full text
    Triggering behavioral adaptation upon the detection of adversity is crucial for survival. The insular cortex has been suggested to process emotions and homeostatic signals, but how the insular cortex detects internal states and mediates behavioral adaptation is poorly understood. By combining data from fiber photometry, optogenetics, awake two-photon calcium imaging and comprehensive whole-brain viral tracings, we here uncover a role for the posterior insula in processing aversive sensory stimuli and emotional and bodily states, as well as in exerting prominent top-down modulation of ongoing behaviors in mice. By employing projection-specific optogenetics, we describe an insula-to-central amygdala pathway to mediate anxiety-related behaviors, while an independent nucleus accumbens-projecting pathway regulates feeding upon changes in bodily state. Together, our data support a model in which the posterior insular cortex can shift behavioral strategies upon the detection of aversive internal states, providing a new entry point to understand how alterations in insula circuitry may contribute to neuropsychiatric conditions

    Aversive state processing in the posterior insular cortex

    No full text
    Triggering behavioral adaptation upon the detection of adversity is crucial for survival. The insular cortex has been suggested to process emotions and homeostatic signals, but how the insular cortex detects internal states and mediates behavioral adaptation is poorly understood. By combining data from fiber photometry, optogenetics, awake two-photon calcium imaging and comprehensive whole-brain viral tracings, we here uncover a role for the posterior insula in processing aversive sensory stimuli and emotional and bodily states, as well as in exerting prominent top-down modulation of ongoing behaviors in mice. By employing projection-specific optogenetics, we describe an insula-to-central amygdala pathway to mediate anxiety-related behaviors, while an independent nucleus accumbens-projecting pathway regulates feeding upon changes in bodily state. Together, our data support a model in which the posterior insular cortex can shift behavioral strategies upon the detection of aversive internal states, providing a new entry point to understand how alterations in insula circuitry may contribute to neuropsychiatric conditions

    Nutrient regulation of Ăź-cell function: what do islet cell/animal studies tell us?

    No full text
    Diabetes mellitus is widely recognised as one of the most serious metabolic diseases worldwide, and its incidence in Asian countries is growing at an alarming rate. Type 2 diabetes (T2DM) is closely associated with age, sedentary lifestyle and poor diet. In T2DM, Ăź-cell dysfunction will occur before hyperglycaemia develops. Excessive levels of glucose, lipid and various inflammatory factors interact at the level of the pancreatic islet to promote Ăź-cell dysfunction. Pancreatic Ăź-cell lines have been widely utilised since the early 1980s and have contributed a large volume of important information regarding molecular, metabolic and genetic mechanisms that regulate insulin secretion. The purpose of this review is to describe the origin and characteristics of the most commonly used Ăź-cell lines and their contribution to discovery of fundamental regulatory processes that control insulin production and release. Pancreatic islets obtained from rodents as well as other animals have additionally provided information on the architecture and three-dimensional design of this endocrine tissue that allows precise regulation of hormone release. Understanding the nature of failure of physiologic and metabolic processes leading to insufficient insulin release and subsequent diabetes has allowed development of novel anti-diabetic therapeutics, now in common use, worldwide.European Journal of Clinical Nutrition advance online publication, 19 April 2017; doi:10.1038/ejcn.2017.49

    Big behavior: challenges and opportunities in a new era of deep behavior profiling

    No full text
    The assessment of rodent behavior forms a cornerstone of preclinical assessment in neuroscience research. Nonetheless, the true and almost limitless potential of behavioral analysis has been inaccessible to scientists until very recently. Now, in the age of machine vision and deep learning, it is possible to extract and quantify almost infinite numbers of behavioral variables, to break behaviors down into subcategories and even into small behavioral units, syllables or motifs. However, the rapidly growing field of behavioral neuroethology is experiencing birthing pains. The community has not yet consolidated its methods, and new algorithms transfer poorly between labs. Benchmarking experiments as well as the large, well-annotated behavior datasets required are missing. Meanwhile, big data problems have started arising and we currently lack platforms for sharing large datasets—akin to sequencing repositories in genomics. Additionally, the average behavioral research lab does not have access to the latest tools to extract and analyze behavior, as their implementation requires advanced computational skills. Even so, the field is brimming with excitement and boundless opportunity. This review aims to highlight the potential of recent developments in the field of behavioral analysis, whilst trying to guide a consensus on practical issues concerning data collection and data sharing.ISSN:0893-133XISSN:1740-634
    corecore