5,839 research outputs found

    The Formation of Population III Stars in Gas Accretion Stage: Effects of Magnetic Fields

    Full text link
    The formation of Population III stars is investigated using resistive magnetohydrodynamic simulations. Starting from a magnetized primordial prestellar cloud, we calculate the cloud evolution several hundreds of years after first protostar formation, resolving the protostellar radius. When the natal minihalo field strength is weaker than B \lesssim 10^-13 (n/1 cm^-3)^-2/3 G (n is the hydrogen number density), magnetic effects can be ignored. In this case, fragmentation occurs frequently and a stellar cluster forms, in which stellar mergers and mass exchange between protostars contribute to the mass growth of these protostars. During the early gas accretion phase, the most massive protostar remains near the cloud centre, whereas some of the less massive protostars are ejected. The magnetic field significantly affects Population III star formation when B_amb \gtrsim 10^-12 (n/1 cm^-3)^-2/3 G. In this case, because the angular momentum around the protostar is effectively transferred by both magnetic braking and protostellar jets, the gas falls directly onto the protostar without forming a disk, and only a single massive star forms. In addition, a massive binary stellar system appears when B_amb \sim 10^-12 (n/1cm^-3)^-2/3 G. Therefore, the magnetic field determines the end result of the formation process (cluster, binary or single star) for Population III stars. Moreover, no persistent circumstellar disk appears around the protostar regardless of the magnetic field strength, which may influence the further evolution of Population III stars.Comment: 59 pages, 21 figures, Accepted for publication in MNRAS. For high resolution figures see http://jupiter.geo.kyushu-u.ac.jp/machida/arxiv/PopIII

    The lattice QCD simulation of the quark-gluon mixed condensate g<\bar{q} \sigma G q> at finite temperature and the phase transition of QCD

    Full text link
    The thermal effects on the quark-gluon mixed condensate g<\bar{q} \sigma G q>, which is another chiral order parameter, are studied using the SU(3)c lattice QCD with the Kogut-Susskind fermion at the quenched level. We perform the accurate measurement of the mixed condensate as well as the quark condensate for 0MeV<=T<=500MeV. We observe the sharp decrease of both the condensates around T_c \simeq 280MeV, while the thermal effects below T_c are found to be weak. We also find that the ratio m_0^2 = g<\bar{q} \sigma G q>/ is almost independent of the temperature even in the very vicinity of T_c, which indicates that the two condensates have nontrivial similarity in the chiral behaviors. We also present the correlation between the condensates and the Polyakov loop to understand the vacuum structure of QCD.Comment: Talk given at the XXII International Symposium on Lattice Field Theory (LATTICE 2004), Fermilab, Batavia, Illinois, USA, 21-26 June 2004, Lattice2004(non-zero), 3 pages, 3 figure

    CP Violations in Lepton Number Violation Processes and Neutrino Oscillations

    Get PDF
    We examine the constraints on the MNS lepton mixing matrix from the present and future experimental data of the neutrino oscillation and lepton number violation processes. We introduce a graphical representation of the CP violation phases which appear in the lepton number violation processes such as neutrinoless double beta decay, the Ό−−e+\mu^--e^+ conversion, and the K decay, K−→π+Ό−Ό−.K^-\to\pi^+\mu^-\mu^-. Using this graphical representation, we derive the constraints on the CP violation phases in the lepton sector.Comment: 21pp, REVTeX, 9 Figure

    Spin 3/2 Penta-quarks in anisotropic lattice QCD

    Get PDF
    A high-precision mass measurement for the pentaquark (5Q) Theta^+ in J^P=3/2^{\pm} channel is performed in anisotropic quenched lattice QCD using a large number of gauge configurations as N_{conf}=1000. We employ the standard Wilson gauge action at beta=5.75 and the O(a) improved Wilson (clover) quark action with kappa=0.1210(0.0010)0.1240 on a 12^3 \times 96 lattice with the renormalized anisotropy as a_s/a_t = 4. The Rarita-Schwinger formalism is adopted for the interpolating fields. Several types of the interpolating fields with isospin I=0 are examined such as (a) the NK^*-type, (b) the (color-)twisted NK^*-type, (c) a diquark-type. The chiral extrapolation leads to only massive states, i.e., m_{5Q} \simeq 2.1-2.2 GeV in J^P=3/2^- channel, and m_{5Q} = 2.4-2.6 GeV in J^P=3/2^+ channel. The analysis with the hybrid boundary condition(HBC) is performed to investigate whether these states are compact 5Q resonances or not. No low-lying compact 5Q resonance states are found below 2.1GeV.Comment: 15 pages, 6 figures, 4 table

    Survival of charmonia above Tc in anisotropic lattice QCD

    Full text link
    We find a strong evidence for the survival of J/ΚJ/\Psi and ηc\eta_c as spatially-localized ccˉc\bar c (quasi-)bound states above the QCD critical temperature TcT_c, by investigating the boundary-condition dependence of their energies and spectral functions. In a finite-volume box, there arises a boundary-condition dependence for spatially spread states, while no such dependence appears for spatially compact states. In lattice QCD, we find almost {\it no} spatial boundary-condition dependence for the energy of the ccˉc\bar c system in J/ΚJ/\Psi and ηc\eta_c channels for T≃(1.11−2.07)TcT\simeq(1.11-2.07)T_c. We also investigate the spectral function of charmonia above TcT_c in lattice QCD using the maximum entropy method (MEM) in terms of the boundary-condition dependence. There is {\it no} spatial boundary-condition dependence for the low-lying peaks corresponding to J/ΚJ/\Psi and ηc\eta_c around 3GeV at 1.62Tc1.62T_c. These facts indicate the survival of J/ΚJ/\Psi and ηc\eta_c as compact ccˉc\bar c (quasi-)bound states for Tc<T<2TcT_c < T < 2T_c.Comment: 4 pages, 1 figur

    Anisotropic Lattice QCD Studies of Penta-quark Anti-decuplet

    Full text link
    Anti-decuplet penta-quark baryon is studied with the quenched anisotropic lattice QCD for accurate measurement of the correlator. Both the positive and negative parity states are studied using a non-NK type interpolating field with I=0 and J=1/2. After the chiral extrapolation, the lowest positive parity state is found at m_{Theta} \simeq 2.25 GeV, which is too massive to be identified with the experimentally observed Theta^+(1540). The lowest negative parity state is found at m_{Theta}\simeq 1.75 GeV, which is rather close to the empirical value. To confirm that this state is a compact 5Q resonance, a new method with ``hybrid boundary condition (HBC)'' is proposed. The HBC analysis shows that the observed state in the negative parity channel is an NK scattering state.Comment: A talk given at International Workshop PENTAQUARK04, July 20-23, 2004 at SPring-8, Japan, 8 pages, 7 figures, 2 table

    Two Langevin equations in the Doi-Peliti formalism

    Full text link
    A system-size expansion method is incorporated into the Doi-Peliti formalism for stochastic chemical kinetics. The basic idea of the incorporation is to introduce a new decomposition of unity associated with a so-called Cole-Hopf transformation. This approach elucidates a relationship between two different Langevin equations; one is associated with a coherent-state path-integral expression and the other describes density fluctuations. A simple reaction scheme X⇄X+XX \rightleftarrows X+X is investigated as an illustrative example.Comment: 14page

    Kinetically driven helix formation during the homopolymer collapse process

    Full text link
    Using Langevin simulations, we find that simple 'generic' bead-and-spring homopolymer chains in a sufficiently bad solvent spontaneously develop helical order during the process of collapsing from an initially stretched conformation. The helix formation is initiated by the unstable modes of the straight chain, which drive the system towards a long-lived metastable transient state. The effect is most pronounced if hydrodynamic interactions are screened.Comment: 4 pages, 4 figure

    On U_q(SU(2))-symmetric Driven Diffusion

    Full text link
    We study analytically a model where particles with a hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The system dynamics are given by the \mbox{Uq_{q}[SU(2)]}-symmetric Hamiltonian of a generalized anisotropic Heisenberg antiferromagnet. Exploiting this symmetry we derive exact expressions for various correlation functions. We discuss the density profile and the two-point function and compute the correlation length Οs\xi_s as well as the correlation time Οt\xi_t. The dynamics of the density and the correlations are shown to be governed by the energy gaps of a one-particle system. For large systems Οs\xi_s and Οt\xi_t depend only on the asymmetry. For small asymmetry one finds Οt∌Οs2\xi_t \sim \xi_s^2 indicating a dynamical exponent z=2z=2 as for symmetric diffusion.Comment: 10 pages, LATE
    • 

    corecore