72 research outputs found

    A Robust Iterative Unfolding Method for Signal Processing

    Full text link
    There is a well-known series expansion (Neumann series) in functional analysis for perturbative inversion of specific operators on Banach spaces. However, operators that appear in signal processing (e.g. folding and convolution of probability density functions), in general, do not satisfy the usual convergence condition of that series expansion. This article provides some theorems on the convergence criteria of a similar series expansion for this more general case, which is not covered yet by the literature. The main result is that a series expansion provides a robust unbiased unfolding and deconvolution method. For the case of the deconvolution, such a series expansion can always be applied, and the method always recovers the maximum possible information about the initial probability density function, thus the method is optimal in this sense. A very significant advantage of the presented method is that one does not have to introduce ad hoc frequency regulations etc., as in the case of usual naive deconvolution methods. For the case of general unfolding problems, we present a computer-testable sufficient condition for the convergence of the series expansion in question. Some test examples and physics applications are also given. The most important physics example shall be (which originally motivated our survey on this topic) the case of pi^0 --> gamma+gamma particle decay: we show that one can recover the initial pi^0 momentum density function form the measured single gamma momentum density function by our series expansion.Comment: 23 pages, 9 figure

    On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring

    Full text link
    We study some Banach lattice properties of the space L-w(1)(v) of weakly integrable functions with respect to a vector measure v defined on a delta-ring. Namely, we analyze order continuity, order density and Fatou type properties. We will see that the behavior of L-w(1)(v) differs from the case in which is defined on a sigma-algebra whenever does not satisfy certain local sigma-finiteness property.J. M. Calabuig and M. A. Juan were supported by the Ministerio de Economia y Competitividad (project MTM2008-04594). O. Delgado was supported by the Ministerio de Economia y Competitividad (project MTM2009-12740-C03-02). E. A. Sanchez Perez was supported by the Ministerio de Economia y Competitividad (project MTM2009-14483-C02-02).Calabuig Rodriguez, JM.; Delgado Garrido, O.; Juan Blanco, MA.; Sánchez Pérez, EA. (2014). On the Banach lattice structure of L-w(1) of a vector measure on a delta-ring. Collectanea Mathematica. 65(1):67-85. doi:10.1007/s13348-013-0081-8S6785651Brooks, J.K., Dinculeanu, N.: Strong additivity, absolute continuity and compactness in spaces of measures. J. Math. Anal. Appl. 45, 156–175 (1974)Calabuig, J.M., Delgado, O., Sánchez Pérez, E.A.: Factorizing operators on Banach function spaces through spaces of multiplication operators. J. Math. Anal. Appl. 364, 88–103 (2010)Calabuig, J.M., Juan, M.A., Sánchez Pérez, E.A.: Spaces of pp -integrable functions with respect to a vector measure defined on a δ\delta -ring. Oper. Matrices 6, 241–262 (2012)Curbera, G.P.: El espacio de funciones integrables respecto de una medida vectorial. Ph. D. thesis, University of Sevilla, Sevilla (1992)Curbera, G.P.: Operators into L1L^1 of a vector measure and applications to Banach lattices. Math. Ann. 293, 317–330 (1992)Curbera, G.P., Ricker, W.J.: Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.) 17, 187–204 (2006)G. P. Curbera and W. J. Ricker, Vector measures, integration and applications. In: Positivity (in Trends Math.), Birkhäuser, Basel, pp. 127–160 (2007)Curbera, G.P., Ricker, W.J.: The Fatou property in pp -convex Banach lattices. J. Math. Anal. Appl. 328, 287–294 (2007)Delgado, O.: L1L^1 -spaces of vector measures defined on δ\delta -rings. Arch. Math. 84, 432–443 (2005)Delgado, O.: Optimal domains for kernel operators on [0,)×[0,)[0,\infty )\times [0,\infty ) . Studia Math. 174, 131–145 (2006)Delgado, O., Soria, J.: Optimal domain for the Hardy operator. J. Funct. Anal. 244, 119–133 (2007)Delgado, O., Juan, M.A.: Representation of Banach lattices as Lw1L_w^1 spaces of a vector measure defined on a δ\delta -ring. Bull. Belg. Math. Soc. Simon Stevin 19(2), 239–256 (2012)Diestel, J., Uhl, J.J.: Vector measures (Am. Math. Soc. surveys 15). American Mathematical Society, Providence (1997)Dinculeanu, N.: Vector measures, Hochschulbcher fr Mathematik, vol. 64. VEB Deutscher Verlag der Wissenschaften, Berlin (1966)Fernández, A., Mayoral, F., Naranjo, F., Sáez, C., Sánchez Pérez, E.A.: Spaces of pp -integrable functions with respect to a vector measure. Positivity 10, 1–16 (2006)Fremlin, D.H.: Measure theory, broad foundations, vol. 2. Torres Fremlin, Colchester (2001)Jiménez Fernández, E., Juan, M.A., Sánchez Pérez, E.A.: A Komlós theorem for abstract Banach lattices of measurable functions. J. Math. Anal. Appl. 383, 130–136 (2011)Lewis, D.R.: On integrability and summability in vector spaces. Ill. J. Math. 16, 294–307 (1972)Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces II. Springer, Berlin (1979)Luxemburg, W.A.J., Zaanen, A.C.: Riesz spaces I. North-Holland, Amsterdam (1971)Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. I. Scalar-valued measures on δ\delta -rings. Adv. Math. 73, 204–241 (1989)Masani, P.R., Niemi, H.: The integration theory of Banach space valued measures and the Tonelli-Fubini theorems. II. Pettis integration. Adv. Math. 75, 121–167 (1989)Thomas, E.G.F.: Vector integration (unpublished) (2013)Turpin, Ph.: Intégration par rapport à une mesure à valeurs dans un espace vectoriel topologique non supposé localement convexe, Intègration vectorielle et multivoque, (Colloq., University Caen, Caen, 1975), experiment no. 8, Dèp. Math., UER Sci., University Caen, Caen (1975)Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators acting in function spaces (Oper. Theory Adv. Appl.), vol. 180. Birkhäuser, Basel (2008)Zaanen, A.C.: Riesz spaces II. North-Holland, Amsterdam (1983

    Integral representation of vector measures and linear operations

    No full text

    Espaces d'Orlicz de champs de vecteurs (VI) (Opérations linéaires)

    No full text

    Remarques sur les mesures dans les espaces produits

    No full text

    Espaces d'Orlicz de champs de vecteurs III (Opérations linéaires)

    No full text
    corecore